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Abstract 
 

ACC believes its current methodology for predicting the reliability of its Air 

Launched Cruise Missile (ALCM) and Advanced Cruise Missile (ACM) stockpiles could 

be improved.  They require a predictive model that delivers the best possible 24-month 

projection of cruise missile reliability using existing data sources, collection methods and 

software.  It should be easily maintainable and developed to allow a layperson to enter 

updated data and receive an accurate reliability prediction.  The focus of this thesis is to 

improve upon free flight reliability, although the techniques could also be applied to the 

captive carry portion of the missile reliability equation.  The following steps were taken 

to ensure maximum accuracy in model results.   

1. Add more detail to flight test reliability calculation.   

2. Convert the ground test data into a usable form (reduce).  

3. Engage in an exercise in feature selection.   

4. Develop a Matlab model prototype. 

5. Validate the model via problems with known solutions.   

6. Apply an appropriate data fusion technique to the different network outputs 
(logistic regression, feed-forward and radial basis function).  

  
7. Put the model into the form of a usable tool for the end-user.  

The end product is the ALCM/ACM Reliability Estimation System (AARES), a 

VBA-based model that meets all user criteria. 
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USING NEURAL NETWORKS FOR ESTIMATING  

CRUISE MISSILE RELIABILITY 

 

I.  Introduction 

General Issue 

United States Strategic Command (USSTRATCOM) conducts an annual Nuclear 

Weapon System Planning Factors Update to determine its ability to meet the Single 

Integrated Operational Plan (SIOP) commitment.  USSTRATCOM requires the Navy, 

Space Command (SPACECOM) and Air Combat Command (ACC) to present a 24-

month prediction of the reliability of the weapons systems of concern, along with a 

justification of the prediction methodology.  ACC believes its current methodology for 

predicting the reliability of its Air Launched Cruise Missile (ALCM) and Advanced 

Cruise Missile (ACM) stockpiles could be improved.  Consequently, ACC/DON was 

tasked with developing a new approach for meeting the STRATCOM requirement. 

Problem Statement 

ACC uses flight test results and an estimated degradation factor to compute 

current year cruise missile reliability.  A simple logistic regression (discussed in Chapter 

2) is performed to predict cruise missile reliability.  Unfortunately, there are an extremely 

small number of annual flight tests (2-3 shots per year).  As a result, the ACC method 

cannot be used with a great degree of confidence in its accuracy.   
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Objective 

The goal of this thesis is to develop a predictive model that delivers a realistic 24-

month reliability projection.  The model should utilize existing data sources, collection 

methods and software.  It should be easily maintainable and developed to allow a 

layperson to enter updated data and receive an accurate reliability prediction.   

Background 

The maintenance concept for cruise missiles does not lend itself to continuous 

data collection of missile status.  ALCMs and ACMs are protected from the worst of the 

elements through storage in secured, structurally reinforced igloos.  The majority of both 

stockpiles are stored mounted on common strategic rotary launchers (CSRL) or pylons, 

and generally referred to as “packages.”  Periodically, packages are pulled from storage 

for maintenance, testing and exercises.  Results of the maintenance checks and tests are 

recorded by munitions personnel and forwarded to the depot at Oklahoma City, Air 

Logistics Center (OC-ALC) and ACC.  Examples of pertinent test fields (notional) are 

shown in Table 1. 
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Table 1:  Typical Input Data (notional) 

 # Passed # Failed Total # Tested Pass Rate 
LLT Type A 167 15 182 92% 
LLT Type B 16 2 18 89% 
LPT Type A 230 8 238 97% 
LPT Type B 13 11 24 54% 
CSRL SIT 0 0 0 N/R 
Pylon SIT 0 0 0 N/R 
CSRL MIT 319 5 324 98% 
Pylon MIT 380 19 399 95% 
Level I Type A 159 50 209 76% 
Level I Type B 15 22 37 41% 
Level III Type B 0 0 0 N/R 
INE Auto-Cal 124 15 139 89% 

* see Appendix A for acronym definitions 
 

Data is provided from Minot and Barksdale Integrated Maintenance Facilities 

(IMFs) as well as historical records from OC-ALC, ACC/LGWN and USSTRATCOM.  

The operational bases use the same basic maintenance concept, however, the manner in 

which the missiles are stored precludes certain tests – i.e. Minot does not store any 

ALCMs on pylons, therefore, no ALCM/Pylon test combinations are performed.   

A Loaded Launcher Test/Loaded Pylon Test (LLT/LPT) Type A is run after 

building the package and to certify operational capability of the package.  It is primarily a 

communication test and verifies that the aircraft will be able to communicate through the 

pylon/launcher and down to the missile.  A LLT/LPT Type B is a retest of previous SIT 

or MIT failure.  The test is identical to a LLT/LPT Type A and serves a similar purpose 

as a Level 1 except at the package level (as opposed to the individual missile level). 

A MIT is a communication test between the aircraft and the missile and is 

normally performed after package upload onto the aircraft.  The aircraft offensive 

avionics system (OAS) sends a command word to the missile and tells it to perform an 
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internal built-in test (BIT) test on any components it has and report the results back to the 

aircraft.  SITs are more involved and must be performed (per technical order) if a single 

missile swap occurs on the flight line.  In addition to all the tests the MIT performs, a SIT 

commands the missile inertial navigation element (INE) to go into a Fine Align/Coarse 

Align.  This test ensures that the inertial platform is able to align to an earth reference and 

can take 1-second updates from the aircraft.  The SIT also performs a preflight test that 

actuates the elevons minutely to ensure the steering avionics are performing properly.  

Both tests are considered the last check on the weapon package prior to the aircrew 

accepting the aircraft as mission ready.  Although MITs and SITs give a good first 

indication of missile health, detected faults must be verified with further testing via an 

electronic systems test set (ESTS) in the IMF.   

Level 1 Type B is a deep cycle electronic test run by the ESTS as a verification of 

MIT, SIT or loaded launcher test/loaded pylon test (LLT/LPT) fault indication.  When a 

memory dump from a previously mentioned test (LLT/LPT, MIT, SIT) indicates a 

problem in a missile area, the Level 1 Type B runs component BITs, interrogates 

components, and compares and validates proper responses to diagnose the problem down 

to the component level.  Level 1 Type A’s are identical to Type B’s except they are run 

after a 72-month engine change or other periodic maintenance.  Figure 1 illustrates the 

flow of events associated with the described ground maintenance tests.  
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Figure 1:  MIT/SIT - Level 1Maintenance Testing 

 
INE auto-cals are performed in the IMF every 48-months and specifically check 

to ensure the INE is operating correctly and not drifting beyond tolerance limits.  Due to 

the 7-hour test duration, auto-cals are normally performed on an entire package to reduce 

workload and expedite the maintenance schedule.  Figure 2 illustrates typical INE auto-

cal chain of events. 

Pass MIT?
Weapon package 

upload to
aircraft

Pass Level 1
Type B?

Swap out 
identified
missile

Transport missile
back to IMF for 
troubleshooting

Aircrew accept 
aircraft

Aircraft 
cocked-on

Upload missile
back to a 
package

Pass SIT?

Return package
to storagePass LLT/LPT?

Pass Level 1
Type A?

72-month engine
change

Deeper, 
component- level
testing and repair

NoNo

No

No

No

Yes

Yes

Yes

Yes

Yes

Affected missile
download

or

Flightline 

IMF 



 

6 

48-month mx
cycle

Pass INE
Auto-Cal?

Return package
to storagePass LLT/LPT?

No

YesYes

No

Remove &
Replace INE

Pass Level 1
Type A?

No

Yes

Deeper, 
component- level
testing and repair

Affected missile
download

Upload missile
back into
package

Affected missile
download

Pass Level 1
Type B?

No

Yes

or

 

Figure 2:  INE Auto-cal - Level 1Maintenance Events 

Level 3 Type B testing is component level testing, run as a verification of faults 

identified in a Level 1 test – i.e. if a missile fault is identified down to a component 

during a Level 1 test, Level 3 testing will troubleshoot the identified component down to 

the subcomponent level. 

Knowing the data available with which to improve upon the existing technique for 

determining missile reliability, the next logical step would be an overview of 

methodologies being used by other weapons communities, thereafter proceeding into a 

discussion on proposed steps to improve upon the existing cruise missile reliability 

computation. 
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II.  Literature Review 

 
 

Before engaging in an attempt to improve upon the current ACC methodology, 

one should consider (at the macro-level) other techniques being employed.  Three other 

weapons communities are currently using valid methodologies for determining weapon 

system reliability.  Although some concepts could be applied to cruise missiles, 

differences in weapon employment and maintenance concepts limit the extent to which 

the cruise missile community may use the ideas of others.   

SLBM 

The submarine launched ballistic missile (SLBM) community contracts the Johns 

Hopkins University Applied Physics Laboratory (JHU-APL) to calculate and track 

Trident II and Trident III reliability.  All information contained in this section was 

derived from Appendix B, Methodology and Supporting Analysis, Trident II and Trident 

III Reliability Plan.  Overall weapon system reliability (WSR) is calculated as follows: 

RRFRLRWSR ××=      (1) 

 
where 

LR = Launch Reliability 

FR = Inflight Reliability 

RR = Reentry Reliability 
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)()( LWAfLIfPLACRLR ×××=      (2) 

  
where  

CR = Countdown Reliability 

PLA = Post-launch Assessment 

LI = Launch Interval 

LWA = Launch Window Availability 

 
 

DRBRFR ×=      (3) 

 
where  

BR = Boost Reliability 

DR = Deployment Reliability 

 
 

RRBRRIRRSRR ××=      (4) 

 
where  

RRS = Reentry Separation Reliability 

RRI = Reentry Inflight Reliability 

RRB = Reentry Burst Reliability 

 

One should note that each sub-sub-reliability (eg. Launch Reliability) is further 

broken down at least one more level in the reliability plan -- discussion of which is 

beyond the scope of this thesis.  The model uses inputs from a patrol test database 

[weapon system readiness tests  (WSRTs), battle readiness tests (BRTs) and navigation 
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accuracy tests (NATs)], surveillance tests and flight test results, as well as simulation 

results for components that cannot be exercised in the course of other testing. 

TLAM 

Information described in this section is derived from the SIOP Planning Factors 

Conference, October 2002.  The Navy uses in-house contractors at Naval Surface 

Warfare Center (NSWC)-Corona for determining Tomahawk Land Attack Missile 

(TLAM) reliability.  The reliability model developed consists of the following: 

 
PRFRLRWSR ××=      (5) 

 
where  

LR = Launch Reliability 

FR = Inflight Reliability 

PR = Payload Reliability 

 
 

MAMRPFRLR ××=      (6) 

 
where  

PFR = Platform Reliability 

MR = Missile Reliability 

MA = Missile Adjustment 
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CACRBABRFR ×××= 2      (7) 

 
where 

BR = Boost Reliability 

BA = Boost Adjustment 

CR2 = Cruise Reliability 

CA = Cruise Adjustment 

 
 

DOEFNavyAFWAMearmPR ×××= &Pr      (8) 

 
where  

Prearm = Warhead Prearm Reliability 

WAM = Warhead Arming Module 

AF&F = Arming Fuzing & Firing 

DOE = Department of Energy Component Reliability 

 

Downward adjustment factors shown in launch and inflight reliability equations 

stem from stockpile failures detected and attributed to the appropriate operational phase.  

Joint integrated laboratory tests (JILT), stockpile laboratory tests (SLT), functional 

ground tests (FGT) and flight tests serve as the primary data sources for the TLAM 

reliability model. 

ICBM 

The synopsis in this section is from the joint paper Weapon System Effectiveness 

for Legacy Systems, authored by Lindblad et al.  As with SLBMs, the intercontinental 
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ballistic missile (ICBM) system program office (SPO), TRW contractors and analysts at 

the JHU-APL have constructed an involved model to determine system reliability (see 

Figure 3).   
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Figure 3:  ICBM Reliability Model (Lindblad, 2001: 8) 

 

Simplifying the model to some degree, the ICBM community uses ground tests, 

flight tests, simulated launches and DOE-provided warhead data as sources for traditional 

analytic models to determine reliability. 

ALCM/ACM 

The current reliability measures discussed in this section are sourced from 

interviews with subject matter experts at ACC (Quick, 2003) and OC-ALC (Bredehoeft, 
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2002), and briefings at the USSTRATCOM Planning Factors Conference, October 2002.  

As mentioned previously in Chapter 1, herein lie the problem and the reason for this 

thesis.  With the exception of missile reliability, it is understood that all other components 

of the following equations have adequate sample sizes with copious amounts of data that 

has been reduced for use in classical analytic models, widely accepted within the 

weapons community.    

 
WRMRCRWSR ××= 2      (9) 

 
where 

CR2 = Carrier Reliability 

MR = Missile Reliability  

WR = Warhead Reliability 

 
ACRRSRWDRASRAGRCR ××××=2      (10) 

 
where 

AGR = Aircraft Generation Reliability 

ASR = Aircraft Systems Reliability 

WDR = Weapon Delivery System Reliability  

RSR = Release System Reliability 

ACR = Aircrew Reliability 

 
 

The National Nuclear Security Administration provides warhead reliability 

information (used in WSR calculation).  All carrier data is collected from maintenance 

databases (updated weekly by maintenance organizations throughout ACC).  With regard 
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to missile reliability, ACC relies heavily upon the cruise missile SPO for reliability data.  

The calculation as follows: 

 

DegradeFFRCCRMR ××=      (11) 

 
where  

CCR = Captive Carry Reliability 

FFR = Free-flight Reliability 

 

Captive carry and free flight data are collected in the course of flight testing.  The 

cruise missile SPO provides the degrade factor shown in the missile reliability equation.  

(One should note here that this thesis focuses solely on improving the missile reliability 

determination  -- in particular the determination for free-flight reliability; although the 

same steps could be applied to captive carry data for an analogous estimate). 

The current methodology for predicting missile reliability involves regressing 

time against flight test results.  For the purposes of demonstration, the notional data 

shown in Appendix B is used.  The data is re-created in JMP where a logistic regression 

is performed using “FY” as the independent variable and “Result” as the dependent 

variable (response).  The regression results are assumed to be a cumulative distribution 

function (CDF) for probability of failure with parameters: 

Intercept -2.8380919 
Coefficient 0.23892478 
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Yielding 

)))23892478.8380919.2(exp(1(
1)( FYFYF ×+−−+=      (12) 

By definition 

))23892478.8380919.2exp(1(
1)(1)( FYFYFFYR ×+−+=−=      (13) 

 
Substituting the FY data into the equation results in the column labeled “Rel Est” 

in Appendix B.  A plot of the derived reliability function is shown in Figure 4. 

0 10 20 30
0

0.5

10.945

0.013

1 F FY( )−

300 FY

v

 
Figure 4:  Flight Test Regression Plot 

 
Predictive missile reliability can be calculated by inputting a value corresponding 

to the desired FY into the R(FY) equation.  The assumption that a CDF results from the 

regression is supported by taking the derivative of F(FY) with respect to FY to get the 

probability density function (PDF) f(FY).  Integrating a valid PDF over the applicable 

range should result in a value of one.  The Mathcad results below show the derivative of 

F(FY) and the integration of f(FY).  The integration solution (1) implies that the CDF 

interpretation with regard to the regression is not unreasonable.   



 

15 

FY
F FY( )d

d

simplify

float 4,
.2389

1. exp 2.838 .2389 FY⋅−( )+( )2.
exp 2.838 .2389 FY⋅−( )⋅→

∞−

∞

FY
FY

F FY( )d
d

⌠


⌡

d
simplify

float 4,
1.→

       (14) 

 

Although the other weapons communities have primarily opted to use analytic 

models for reliability predictions, a concerted effort into researching missile component 

reliabilities and corresponding tail-number histories would be necessary for developing a 

similar approach for cruise missiles.  Statistical techniques that predict failures based 

upon the performance of a similar system could also be used.  Unfortunately, analytic 

models rely upon assumptions about the nature of failures, development environments 

and probabilities of failure.  Additionally, traditional reliability models demonstrate 

different predictive capabilities during the various phases of testing and work best with 

copious amounts of test data.  The cruise missile community does not employ the 

maintenance concept nor have the data collection infrastructure to support such an effort.  

As a result, a traditional analytic model that predicts well under these circumstances 

seems infeasible.   

In lieu of analytic models, neural networks could be used for reliability estimation 

and prediction using only failure histories.  Although the weights developed by a network 

do not directly relate to particular reliability metrics (unlike analytic models), neural nets 

do not rely upon assumptions about the development environment or external parameters, 

nor do they require large amounts of data to make reasonable predictions.   
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In simplest terms, a neural network processes an input feature vector x = 

(x1,…xN) along N branching nodes (Figure 5).   
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Figure 5:  Simple Neural Network (Bauer, 2002) 

 
The input nodes fan out to each perceptron (network node that performs 

operations upon N inputs and provides a single output) so as to allow input from each 

component of x.  Each incoming arrow has an associated weight (wnm), indexed by the 

convention:  input node associated with the xn
th feature coming into the mth perceptron.  

Each of the M perceptrons partitions the feature space in to two half-spaces, usually 

Input 
Nodes 

Perceptrons

Target 
Vector 
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resulting in at least 2M half-spaces.  Adjusting the weights (wnm) determines the required 

convex regions that contain the desired multilinearly separable classes, as defined by the 

target vector (T).  In other words, the network attempts to approximate the values in the 

target vector (T) using features contained in the input vector (x).   

Karunanithi et al. in their IEEE journal article present a pertinent example of a 

neural network used to solve a reliability problem.  In terms of a neural network 

mapping, reliability prediction can be stated as: 

{ } )()()),(),((: ∆+→∆+ ++ totitOtIP hkhkkk      (15) 

 
 

System Failure History Network Prediction 
 

where   
)(tI k   Set of sequential execution times 

)(tOk     Set of corresponding observed accumulated faults  

)( ∆++ ti hk   Desired future test session 

)( ∆++ to hk  Corresponding cumulative faults 

∆   Cumulative execution time of h consecutive future test sessions 

 
By adjusting network neurons’ weights via training, the network can be used to 

predict the total number of faults at the end of a future test session k + h, merely by 

inputting )( ∆++ ti hk .  A network’s predictive ability can be determined by what it learns 

and in what sequence.  Generalization training can be described as relating each input it at 

time t with an output ot – so the network learns to model the relationship between the 

input and output variables relative to the same time period (Figure 6).   
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Figure 6:  Generalization Training 

 
Prediction training is similar to generalization training, except it at time t is 

associated with the value of the output variable ot+k at time.  So the network learns to 

predict outputs relative to the nth time period (Figure 7). 
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Figure 7:  Prediction Training 

 
Training a network is usually accomplished via a supervised learning algorithm, 

where network weights are adjusted using a quantified error feedback.  Back-propagation 

is the most common supervised learning algorithm.  Using an iterative approach, back-

propagation calculates the sum-squared error between desired outputs and the network-

generated outputs and uses the gradient of the sum-squared error to adapt network 
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weights in an effort to reduce the error measure in future epochs.  The network is 

considered to be trained when the squared error drops below a specified threshold. 

To test the contention that neural nets can work as well or better than analytic 

models, Karunanithi et al used the following example.  A typical feed-forward network 

was trained on a software failure dataset.  Total test and debugging time was 46 days with 

a cumulative 266 faults over the time period.  Since logistic-function units were used in 

the network, data was scaled down to a suitable range (0.1 to 0.9).  For the purpose of the 

experiment, minimum training-set size started at three data points (time increments) and 

incremented up to 45 data points (time increments) in steps of two.  A prediction average 

was taken over fifty trials at each set size with different random seeds used to initialize 

the weights for each trial.  The overall purpose of the experiment was to predict 

cumulative endpoint errors at various points of time prior to the actual dataset endpoint 

(46).  Table 2 shows the experiment results by way of comparison.  Results are in terms 

of relative prediction error using the formula: 

RPE = (predicted faults – actual faults) / actual faults     (16) 
 

Table 2:  Endpoint Relative Prediction Error Results 

Average and Maximum Errors in Endpoint Predictions 
Average Error  Maximum Error Model 

1st Half 2nd Half Overall  1st Half 2nd Half Overall
FFN Generalization 7.34 1.19 3.36  10.48 2.85 10.48 
FFN Prediction 6.25 1.10 2.92  8.69 3.18 8.69 
        
Logarithmic 21.59 6.16 11.61  35.75 13.48 35.75 
Inverse Polynomial 11.97 5.65 7.88  20.36 11.65 20.36 
Exponential 23.81 6.88 12.85  40.85 15.25 40.85 
Power 38.30 6.39 17.66  76.52 15.64 76.52 
Delayed S-shape 43.01 7.11 19.78  54.52 22.38 54.52 
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First Half is the model’s average prediction error in the first half of the experiment.   
Second Half is the model’s average prediction error in the second half of the experiment. 
Overall is the model’s average prediction error for the entire duration of the experiment. 

 

The results show accurate neural network endpoint predictions in early and late 

stages of the experiment.  A similar experiment was conducted to show next-step 

prediction accuracy with results shown in Table 3. 

Table 3:  Next-Step Relative Prediction Error Results 

Average and Maximum Errors in Next-Step Predictions 
Average Error  Maximum Error Model 

1st Half 2nd Half Overall  1st Half 2nd Half Overall 
FFN Generalization 8.61 2.40 4.59  17.51 4.95 17.51 
FFN Prediction 8.02 3.05 4.80  17.74 6.64 17.74 
        
Logarithmic 4.94 2.31 3.24  5.95 7.56 7.56 
Inverse Polynomial 4.76 2.24 3.13  6.34 7.83 7.84 
Exponential 5.70 2.33 3.52  10.17 7.42 10.17 
Power 4.59 2.44 3.20  8.59 7.12 8.59 
Delayed S-shape 6.17 2.12 3.55  13.24 7.98 13.24 

 

In this case, the data shows neural nets having prediction errors only slightly 

greater than traditional analytic models.  As illustrated by the example, neural networks 

can be used to approximate reliability at different points in time using failure histories.  

Furthermore, the prediction errors realized by the networks are less than or comparable to 

traditional analytic models.   

As a practical, although modified, application of the previous article in this thesis, 

neural networks are used for predicting cruise missile reliability (for this thesis, free-

flight reliability prediction is the focus).  Selected ground test results (features) are run 

through different types of neural networks with notional free flight test results as the 
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target.  Once generated, the different network outputs are fused into a single number 

representing the model’s estimate of free flight reliability per year. 

     Logistic Regression. 
 Widely used in statistics, logistic regression can be visualized using Figure 8 

(Bauer, 2002). 

X1

X2
.
.
.
.
XN

∑
=

⋅=
N

n nXnws
1 se

z −+
=

1
1 z T

w1
w2

wN

X1

X2
.
.
.
.
XN

∑
=

⋅=
N

n nXnws
1 se

z −+
=

1
1 z T

w1
w2

wN

 
Figure 8:  Logistic Regression Network 

 
Model features (Xn) are multiplied by an initial draw of random weights (wn) and 

summed (s).  The sum (s) is put through a ‘squashing function’ and an output (z) results.  

By calculating the sum-squared error between desired outputs (T) and the network-

generated outputs (z), network weights (w) are adjusted iteratively in the direction 

opposite the gradient of the sum-squared error.  The process continues until changes in 

the sum of squared error are reduced below a specified threshold.  
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     Feed-Forward Neural Network. 
Taking the logistic regression network a step further, feed-forward neural 

networks (FFN) use an additional layer of hidden neurodes to approximate the target 

vector (Figure 9 – Looney, 1977: 84). 
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Figure 9:  Feed-Forward Neural Network 

 
At each neurode (m) in the middle (hidden) layer, model features (Xn) are 

multiplied by respective weights (wnm) and summed (rm).  The middle layer sums (rm) are 

Hidden 
(middle)

Layer 

Output
Layer 
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put through the ‘squashing functions’ (f) to get middle layer outputs (ym).  At each output 

neurode (j), middle layer outputs (ym) are multiplied by upper layer weights (umj) and 

summed (sj).  The upper layer sums (sj) are put through another set of  ‘squashing 

functions’ (g) to get network outputs (zj).  Upper and middle layer weights are trained 

using a supervised training algorithm – back-propagation.  As described by Karunanithi 

et al, back-propagation iteratively calculates sum of squared errors between desired 

outputs (Tj) and network outputs (zj).  Upper and middle layer weights are adjusted in the 

direction opposite the gradient of the sum of squared errors.  As with logistic regression, 

training continues until changes in the total sum of squared error drop below a specified 

threshold. 

     Radial Basis Function Network. 
A visualization of the third and final type of neural network used in the model can 

be seen in Figure 10 (Looney, 1977: 96).   



 
Figure 10:  Radial Basis Function Network 

 
A radial basis function network (RBFN) differs from the previously described feed-

forward neural network in the activation functions and the way they are used.  Different 

paradigms are used when training a RBF network (Looney, 1977: 98).  In the simplest 

case, network weights at the middle and output layers are initially set and remain fixed – 

i.e. no training.  The second paradigm deigns that the middle layer weights remain fixed 

and only the output layer weights are trained.  The third and most flexible design allows 

for training of both the middle and output layer weights.  The particular network 
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allows for training of both the middle and output layer weights.  The particular 

network used in the model is designed according to the second paradigm, in that the 

matrix of weights at the middle hidden layer (vnm) is initially set equal to the matrix of 

input training exemplars (Xnq) and then not adjusted further.  Only the weights at the 

output layer (umj) are trained to reduce the sum of squared error for the network.  Hidden 

layer neurodes number the same as the number of input exemplars (M=Q), with each 

neurode having the same number of components (N) as the input vectors’ features.  Put 

another way, “The center vector vm = (v1m,…, vNm) at the mth hidden neurode has N 

components to match the input feature vector.” (Looney, 1977: 96)  A spread parameter 

(σ ) is calculated using the formula: 

NM
1

)2(

1

⋅
=σ      (17) 

   

As exemplar vectors (X) ‘proceed’ through the network, the square of its’ 

distance from the center vector (vm) is calculated.  The idea being, the neurode activation 

function will react more strongly as X is closer to the center vector of the particular 

neurode, with X = vm resulting in the strongest response.  Middle layer outputs ym are 

calculated as shown in Figure 10.  At each upper layer output neurode, initial weights 

(umj) are set by a random draw, multiplied by the appropriate middle layer outputs, 

summed, and divided by M to attain a model output (zj).  Upper layer weights are 

adjusted via supervised training (similar to the previously discussed FFN) until changes 

in total sum of squared error drops below a specified threshold.   



 

26 

     Generalized Ensemble Method. 
When faced with three network outputs and desiring only one, a method for 

combining the outputs becomes necessary.  Ideally, it is desirable to combine the outputs 

in such a manner as to reduce the mean squared error as compared to any single network.  

Each network in the model develops differently since the randomly generated initial 

weights result in different starting locations and the model uses three different classes of 

networks.  These facts in conjunction with the gradient search method potentially cause 

each network to point to a different local minimum in the error space.  The local minima 

are important as they capture different performance areas of the data set.  Therefore, 

when the results of different networks are combined, more information is captured and 

the performance of the model is increased.  The generalized method for combining the 

different network outputs is referred to as generalized ensemble method (GEM).  

(Perrone and Cooper: 7-8)  The generalized ensemble method entails combining N 

networks (fi(x)) such that ∑ ∑
=

=

=

=

+=≡
Ni

i

Ni

i
iiiiGEM xmxfxfxf

1 1
)()()()( αα .  The si 'α must 

satisfy the constraint ∑ = 1iα , and mi is defined as the difference between the network 

fi(x) and the true, unknown function f(x).  Perrone and Cooper define a correlation matrix 

Cij as E[mi(x)mj(x)] and propose minimizing the MSE[fgem] by minimizing ∑
ji

ijji C
,

αα .   

Furthermore, the authors state that 
∑ ∑
∑

−

−

=
k j kj

j ij
i C

C
1

1

α will minimize the desired MSE.  Put 

simply, the correlation matrix between the different networks allows calculation of 

“weights” to be applied to the output of each net.  Simply summing the weighted outputs 

of each network produces a new model that reduces the MSE of the overall model.  This 



 

27 

result stems from different parts of the error space being captured by the different 

networks, but combining the networks allows the capture of more of the error space than 

any single model. 

    Using the tools and techniques described in this section, it becomes possible to 

develop a model for determining and predicting free flight reliability using a ground test 

database, three neural networks and a fusion of network outputs. 
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III.  Methodology 

 
 

As with the models developed by other agencies, the objective of this thesis is to 

create a more detailed, easily maintainable model that accurately predicts cruise missile 

reliability.  It should be noted that the focus of this thesis is to improve upon free flight 

reliability, although the techniques could also be applied to the captive carry portion of 

the missile reliability equation.  The steps taken in the course of this thesis ensure 

maximum accuracy in model results.   

1. As the other weapons communities have done, develop a good target vector for 
the networks by adding more definition to cruise missile flight test reliability 
calculations. 

 
2. Convert the ground test data into a usable form (reduce).  

3. Engage in an exercise in feature selection.   

4. Develop a Matlab model prototype. 

5. Validate the model via problems with known solutions.   

6. Apply an appropriate data fusion technique to the different network outputs 
(logistic regression, feed-forward and radial basis function). 

 
7. Put the model into the form of a usable tool for the end-user – convert the model 

into visual basic for applications (VBA) and save into a MS Excel worksheet 
containing the database.   

Add Definition to Flight Test Reliability  

To attain valid outputs from a model, valid targets must be used.  Therefore, an 

examination of the inflight portion of the mission is in order.  During reliability testing, 

“Methods exercising all product operational modes should be described.” and “…the 

effective use of test resources and the validity of the data collected require that a degree 
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of rigor be included such that the product is operated and stresses as intended…” (Morris: 

255-256)  A review of the technical order (TO) for AGM-129 (ACM -- TO 21-AG129-2-

1:  1-30 – 1-34), and conversations with subject matter experts reveals some natural break 

points in the course of a mission that can be used to further define the operational modes 

of the missile.  During captive carry the missile has two identifiable phases:  transit and 

prelaunch.  The transit phase includes the time after the aircrew has accepted the aircraft 

but prior to prelaunch.  Prelaunch phase begins with missile warm-up and extends up to 

(but not including) missile separation.  The flight phase of the missile is broken down 

into three phases:  transition to cruise, cruise and endgame.  Transition to cruise begins 

with missile separation and ends after the missile separation maneuver is completed.  The 

cruise phase begins with the missile flying to the first waypoint and ends prior to the 

warhead arming maneuver.  Endgame begins with the warhead arming maneuver and 

terminates with missile detonation.  Figure 11 illustrates the sequence of events for a 

typical mission. 
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to Cruise Cruise Endgame

Missile Warm-up
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Fault Monitor
Missile Alignment
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Figure 11:  Mission Sequence (TO 21-AG129-2-1:  1-30 – 1-34) 
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Each flight test missile uses a telemetry kit to provide the ground station with 

missile status.  Flight test failures are investigated fully until a causative factor for the 

failure is identified.  As a result, the mission phase where a failure-causing fault occurs is 

readily identifiable.  Using the natural breakpoints in the mission profile, more detailed 

reliability equations for missile reliability (equation 11) become evident.   

CCPRCCTRCCR ×=      (18) 

  
where   

CCTR = Captive Carry Transit Reliability 

CCPR = Captive Carry Prelaunch Reliability 

 
 

FFERFFCRFFTRFFR ××=      (19) 

     
where 

FFTR = Free Flight Transition to Cruise Reliability 

FFCR = Free Flight Cruise Reliability 

FFER = Free Flight Endgame Reliability 

Data Reduction 

The data being considered for use in the model is standardized into pass rates per 

month using the simple formula: 

testedmissiles
testpassedmissilesPassRate

__#
___#

=      (20) 

 
 



 

31 

The pass rates for MITs and SITs are adjusted for false negatives using Level 1 

Type B results.  Missiles passing Type B testing are credited back to the MIT and SIT 

pass rates in proportion to the number of missiles undergoing test.   

 

SITfailingmissilesMITfailingmissiles
MITfailingmissilesproportionMIT

___#___#
___#_

+
=      (21) 

 

proportionMITTypeBpassedmissilesadjustmentMITTypeB ____#__ ×=      (22) 

 

MITviatestedmissiles
adjustmentMITTypeBMITpassedmissilesPassRateMIT

____#
_____#_ +

=  (23) 

 
 

 

SITfailingmissilesMITfailingmissiles
SITfailingmissilesproportionSIT

___#___#
___#_

+
=      (24) 

 

proportionSITTypeBpassedmissilesadjustmentSITTypeB ____#__ ×=      (25) 

 

SITviatestedmissiles
adjustmentSITTypeBSITpassedmissilesPassRateSIT

____#
_____#_ +

=      (26) 

 
 

Another consideration is whether to use monthly data or annual averages.  When 

making the decision, one should first consider continuity of the data.  Analysis of the data 

reveals MITs are primarily run in the course of exercises and aircraft generations – i.e. 

they are not accomplished every month.  Using the monthly averages would cause 
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considerable gaps in the database and render the test unusable as a feature.  As a second 

matter of course, missile MIT failures will result in Level 1 Type B re-testing to verify 

faults.  In some cases, the Type B verification is not run in the same month as when the 

MIT fault was realized; or the missile testing “bleeds-over” into another month.  In that 

case, the Type B adjustment to the MIT pass rate would not be credited to the appropriate 

month.  Annual averages alleviate the “bleed-over” problem by using the raw numbers 

accumulated over the course of the year and making the adjustments at year’s end.  As a 

final note, STRATCOM only requires annual numbers (rates per FY) for their planning 

factors. 

Model Feature Selection 

Once again, one should note that this thesis focuses solely on the free flight 

portion of the missile reliability equation, but the same feature selection techniques can 

be applied toward developing an analogous model for captive carry reliability.  In 

developing the neural networks for predicting free flight reliability, pertinent features 

must be selected from a ground test database (database synopsis presented in Appendix 

C).  Using all the available tests may give a more precise estimate of the desired 

reliability, however running the entire set of input features through the model could be 

time consuming as well as unnecessary.  Ideally, a feature set that adequately represents 

the underlying structure of the data while providing an accurate estimate of the chosen 

reliability is desirable.  The database compiled previously is comprised of numerous 

ground test results conducted on Air Launched Cruise Missiles compiled over 13 years 

(FY1990 through FY2002).  The few empty data fields (years where tests of that nature 
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were not performed – SIT testing primarily) are filled in by interpolation estimates.  

Changes in the manner of tracking the test data also result in using estimates for certain 

fields – LLT/LPT Types A and B primarily.  Test definitions and feature selection 

techniques can be used to reduce the number of ground tests to be used as inputs in the 

model.  The selected inputs are then validated against subject matter expert opinion.  

Table 4 summarizes the data fields available as potential model features. 

Table 4:  Database Summary 

GROUND TEST DESCRIPTION 
Loaded Launcher Test / 
Loaded Pylon Test 
(LLT/LPT) Type A 

After package build-up; run to certify operational 
capability of package; communication test primarily – 
will the aircraft be able to communicate through the 
pylon/launcher and down to the missile 

LLT/LPT Type B Identical to Type A except run to verify previous SIT or 
MIT failure 

Missile Interface Test (MIT) Communication test between the aircraft and the missile 
-- normally performed after package upload onto the 
aircraft.   

Systems Interface Test (SIT) More involved test than MIT; must be performed (per 
technical order) if a single missile swap occurs on the 
flight line 

Level I Test, Type A Run after a 72-month engine change or other periodic 
maintenance; deep cycle electronic test run by the ground 
test set  

Level I Test, Type B Identical to Type A except run as a verification of MIT, 
SIT or LLT/LPT fault indication -- when a memory 
dump from a previously mentioned test indicates a 
problem in a missile area, the Level 1 Type B runs 
component BITs, interrogates components, and compares 
and validates proper responses to diagnose the problem 
down to the component level. 

Level III Test, Type B Run after a Level 1 test indicates a problem with a 
specific component – diagnoses problem down to sub-
component level 

INE Auto-Calibrations Performed every 48 months – specifically checks to 
ensure INE is operating correctly and not drifting beyond 
tolerance limits 
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By definition, Type B testing only occurs as a result of a Type A test failure.  

Therefore, all Type B testing is excluded from the model except for use as an adjustment 

factor.  The remaining tests of interest include, LLT/LPT Type A, SIT, MIT, Level 1 

Type A and INE Auto-cal.  Additionally, previous year flight test results are added to the 

list of possible features, now totaling six potentials.  Two techniques are used for feature 

selection:  factor analysis and backwards-selection logistic regression.  All flight test data 

(previous year results only used for factor analysis; previous and current year results used 

for backwards-selection logistic regression) used in both approaches are notional for 

classification purposes.  Table 5 illustrates the input matrix used for both techniques.  

Shaded fields denote estimated data.  

Table 5:  Input Matrix – Potential Features 

FY LLT A SIT MIT Lvl 1 A INE Prev Yr Flt Test 
90 96.03% 88.95% 93.88% 82.66% 94.10% 67.00% 75.00% 
91 95.63% 96.34% 96.84% 81.87% 95.60% 75.00% 75.00% 
92 95.32% 98.79% 99.10% 78.63% 97.45% 75.00% 50.00% 
93 93.98% 93.64% 98.18% 79.57% 95.15% 50.00% 67.00% 
94 93.13% 96.74% 98.75% 80.43% 95.42% 67.00% 75.00% 
95 94.44% 94.90% 96.84% 81.22% 95.37% 75.00% 50.00% 
96 95.04% 84.62% 99.00% 79.07% 96.94% 50.00% 67.00% 
97 95.00% 100.00% 97.96% 78.05% 94.39% 67.00% 75.00% 
98 95.09% 93.72% 98.65% 79.58% 93.72% 75.00% 100.00% 
99 94.97% 91.18% 97.67% 73.49% 93.14% 100.00% 100.00% 
00 95.48% 100.00% 99.37% 83.46% 96.48% 100.00% 100.00% 
01 96.19% 100.00% 99.21% 71.10% 90.65% 100.00% 75.00% 
02 92.06% 94.91% 99.46% 55.15% 84.13% 75.00% 100.00% 

        
 estimated data      
        

 

A factor analysis is performed to investigate underlying dimensions of the data 

set.  Using SAS to perform the factor analysis on the matrix of potential features 

(columns 2-7 of Table 5), the resulting eigenvalues suggested a 3-factor model as 
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appropriate (Kaiser’s Criterion).  A Varimax rotation was applied to see how the features 

loaded with the following results (Table 6 -- full SAS factor analysis output available in 

Appendix D):  

Table 6:  Factor Analysis Results (abbreviated) 

Eigenvalues of the Correlation Matrix: Total = 6  Average = 1 
 Eigenvalue Difference Proportion Cumulative  

1 2.57942941 0.93849633 0.4299 0.4299  
2 1.64093307 0.64655285 0.2735 0.7034  
3 0.99438022 0.49333963 0.1657 0.8691  
4 0.50104060 0.25566604 0.0835 0.9526  
5 0.24537455 0.20653240 0.0409 0.9935  
6 0.03884215  0.0065 1.0000  
      

3 factors will be retained by the NFACTOR criterion. 
 

Rotated Factor Pattern 
  Factor1 Factor2 Factor3  
 LLTA 0.60440 0.55597 0.39962  
 SIT 0.06236 0.58353 0.64407  
 MIT -0.19761 0.00203 0.88377  
 Level1A 0.95825 -0.02802 -0.18447  
 INE 0.97243 -0.12875 -0.00015  
 PrevYr -0.16770 0.92043 0.10361  

 
Variance Explained by Each Factor 

      
  Factor1 Factor2 Factor3  

  2.3002360 1.5141744 1.4003323  
 

Final Communality Estimates: Total = 5.214743 
      

LLTA SIT MIT Level1A INE PrevYr 
0.83410138 0.75922666 0.82009747 0.95306195 0.96220513 0.88605012 
      

 

Communality estimates suggest that a 3-factor model design adequately explains 

the majority of the variance in the individual variables and, therefore is appropriate.  
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Running across the columns with regard to each feature, the maximum values are circled 

and boldface.  Each maximum value is grouped with the others in the column and an 

analysis of the groupings reveals corresponding categories.  Table 7 shows a translation 

of the factor analysis results into categories.  As a rule of thumb, the model should 

include one of the relevant features under each of the factor columns. 

Table 7:  3-Factor Analysis Breakdown 

 Factor 1 Factor 2 Factor 3 

Category IMF Testing Flight Testing On-Acft Testing 

Relevant 
Features 

Level 1 Type A 
 
INE Auto-cal 
 
LLT/LPT Type  

Previous Year 
Flight Test  

SIT 
 
MIT 

 

A backwards-selection logistic regression is run on the same data shown in Table 

5, with the code utilized shown in Appendix E.  Columns 2-7, along with a bias column, 

were used as features with the last column serving as the target.  After examining the 

absolute value of the resultant weights, and removing from the model the feature 

corresponding to the weight smallest in magnitude, the model is re-run.  Table 8 shows 

the results of the backwards-selection regression with shaded elements to show the 

features eliminated and the model formed as a result.  In the first case, all the features (6) 

are included in the regression.  The calculated weights are shown in the first data row of 

Table 8.  In this case, the weight associated with the SIT feature (shaded) has the smallest 

magnitude – so it is removed from the model.  The logistic regression code is run again 

with only the bias, level 1, INE, LLT A, Prev Yr and MIT features (5) included.  From 
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the second run, the LLT A feature has the smallest associated weight and so it is 

eliminated from the next run.  The process continues until only three features remain, as 

suggested by the factor analysis.  Feature elimination is also tempered with judgment 

based upon factor analysis results.  Total error is tracked to verify only minor changes 

occurring as the features are eliminated.   

Table 8:  Backwards-Selection Logistic Regression Results 

 Weights 

Factor  IMF Testing Flt Test On-Acft Testing 

Error Bias Level 1 INE LLT A PrevYr SIT MIT 

0.2766 0.4755 -1.4109 -0.7661 0.2540 2.5231 -0.1943 0.6601 

0.2792 0.4001 -1.3285 -0.7275 0.2010 2.4317  0.5675 

0.2796 0.4535 -1.2879 -0.6740  2.4400  0.6172 

0.2831 0.2300 -1.4920   2.3869  0.3995 

 
 

Plots of the backwards-selection regression results (model outputs from 6, 5, 4 

and 3 feature networks) are shown in Figure 12.  For the sake of comparison, repeated 

regression traces are shown as solid lines with the notional flight test results displayed as 

a dashed line.  As shown, the LogReg results closely overlay each other; making it seem 

as if only one plot is shown. 
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Figure 12:  3-Factor Backwards Regression Results 

 
Error statistics from Table 8 and the log-reg plot from Figure 12 show little 

change with the removal of the selected features.  Therefore, the feature selection results 

suggest the following features for use in the neural network:  Level 1 Type A, MIT, and 

Previous Year Flight Test.  The three features also happen to coincide with subject matter 

expert opinion (Bredehoeft, 2002), lending validity to the feature selection techniques 

used.    

Using the aforementioned rationale, with notional flight test data included, a 

matrix of input vectors results as illustrated by Table 9: 

4 Logistic 
Regression 
Plots 
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Table 9:  Missile Test Data 

 ALCM Model Features Target 
FY MIT Level 1 A Prev Yr Flt Test 

1990 93.88% 82.66% 67.00% 75.00% 
1991 96.84% 81.87% 75.00% 75.00% 
1992 99.10% 78.63% 75.00% 50.00% 
1993 98.18% 79.57% 50.00% 67.00% 
1994 98.75% 80.43% 67.00% 75.00% 
1995 96.84% 81.22% 75.00% 50.00% 
1996 99.00% 79.07% 50.00% 67.00% 
1997 97.96% 78.05% 67.00% 75.00% 
1998 98.65% 79.58% 75.00% 100.00% 
1999 97.67% 73.49% 100.00% 100.00% 
2000 99.37% 83.46% 100.00% 100.00% 
2001 99.21% 71.10% 100.00% 75.00% 
2002 99.46% 55.15% 75.00% 100.00% 

Matlab Prototype 

With the preparatory work completed, it is now possible to develop a model to 

predict the desired reliability.  Although the final version is a standalone model, written 

in VBA and nested in the same MS Excel workbook as the database, the majority of the 

development and validation is Matlab.  The code is presented in full in Appendix F.   

For developmental purposes, the matrix of input values (Table 9, columns 2 – 5) 

is hard coded into the file.  The user sets the number of years upon which the networks 

will train as well as the number of out-years to predict.  The same matrix is used in each 

network in turn – logistic regression, feed-forward neural network and radial basis 

function network (Figure 13).   
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Figure 13:  Reliability Model Block Diagram 

 
Using training algorithms given in class notes (Bauer, 2002) and the Looney text 

(Looney, 1977: 99-100, 125), the different networks train and generate outputs.  The 

weights developed in training are used to run the remaining exemplars through the 

networks and generate prediction outputs.  Training and prediction outputs are presented 

graphically along with the target vector for the sake of comparison (Figures 14 and 15).  

The cluster of traces running through the center of each chart suggests similar estimate 

and predictive outputs from the different networks in the model.  The numerical model 

results are also displayed in tabular format (Tables 10 and 11).  
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Figure 14:  Current Year Reliability Estimates 

 
Table 10:  Current Year Reliability Estimates 

 FY90 FY91 FY92 FY93 FY94 FY95 FY96 
ZLR 0.7253  0.7659  0.7761  0.6521  0.7357  0.7677  0.6545 
ZFF 0.7026  0.7340  0.7574  0.6949  0.6970  0.7209  0.6801 
ZRBF 0.6698  0.7232  0.7664  0.6654  0.7103  0.7310  0.6717 
ZGEM 0.6995 0.7413 0.7667 0.6707 0.7145 0.7400 0.6687 
        
 FY97 FY98 FY99 FY00 FY01 FY02 

ZLR 0.7419  0.7732  0.8711  0.8543  0.8757  0.8313 
ZFF 0.6917  0.7175  0.9302  0.8998  0.9381  0.9473 
ZRBF 0.7345  0.7547  0.9249  0.8298  0.9456  0.9193 
ZGEM 0.7227 0.7486 0.9085 0.8614 0.9195 0.8988 
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* Trace dropoffs due to Matlab graphing limitations. 

Figure 15:  24-month Reliability Prediction 

 
Table 11:  24-month Reliability Prediction 

 FY90 FY91 FY92 FY93 FY94 FY95 FY96 FY97 
ZLR   0.7564  0.7619   0.7618  0.7494   0.7586 0.7615  
ZFF   0.8009  0.7751   0.7646  0.7621   0.7332 0.7251  
ZRBF   0.6262  0.6973   0.7583  0.4836   0.7436 0.7457  
ZGEM   0.7140 0.7426 0.7604 0.6519 0.7583 0.7565
         
 FY98 FY99 FY00 FY01 FY02 FY03 FY04 
ZLR 0.7497   0.7568   0.7620  0.7701 0.7761  0.7700 0.7501 
ZFF 0.7279   0.7620   0.7873  0.8069 0.8026  0.8024 0.8013 
ZRBF 0.9889   0.9593   0.7457  0.8154 0.7808  0.8294 0.7655 
ZGEM 0.8329 0.8303 0.7562 0.7830 0.7791 0.7562 0.7750 
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Code Validation 

Although the Matlab code follows the higher-level training algorithms as 

previously discussed, the code must be validated against a problem with a known answer 

to determine if it is performing correctly.   

The full validation code is presented in Appendix G.  For the logistic regression 

network, a set of 30 data points is randomly drawn over the range [1,10] and a target 

vector is developed using the logistic function: 
))(exp(1

1)(
1 x

xt
o ⋅+−+

=
ββ

.  The 

network trains on the first 20 points and predicts on the last 10 points.  Both sets of data 

are plotted to show coincidence.  If the network is coded properly, the network training 

and prediction outputs should plot a line that is near identical to the input data set and 

produce weights such that 5.1−=oβ  and 6.01 =β .  Figure 16 shows the results of the 

logistic regression verification code.  The network results plot easily matches the target 

values and the calculated weights are w = -1.4999   0.6000, supporting the contention that 

the code logic is performing as expected. 



 

44 

 
Figure 16:  Logistic Regression Validation 

 
The other two networks (feed forward and radial basis function) are another 

matter.  The code for the feed forward network and the radial basis function network is 

robust enough to be used for classification as well as estimation, so the XOR problem 

serves as a means for verification.  The code presented in Appendix G is identical to the 

model in Appendix F except the input matrix consists of two columns of uniformly 

generated numbers between [-1, 1].  The columns correspond to X and Y Cartesian 

coordinates (Figure 17).   
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Figure 17:  Random Input Data Classification 

 
A corresponding target vector is generatied based upon the categorization of the 

data into two classes:  (0,1) for quad 1 or 3 membership, (1,0) for quad 2 or 4 

membership.  A confusion matrix is calculated at the end of the code as a measure of 

classification accuracy.  As a naming convention, quad 1 or 3 membership is given as 

positive while quad 2 or 4 membership is given as negative.  Results from the confusion 

matrices are shown in Table 12. 

2 (-) 1 (+) 

4 (-) 3 (+) 



 

46 

Table 12:  Network Verification Confusion Matrices 

 

           

 

           

 

 

 

 

 

 

 

 

 

 

If the networks are coded and functioning properly, the confusion matrices will 

load heaviest in the ‘true positive’ and ‘true negative’ cells.  The confusion matrices 

produced by the validation codes support the contention that the code for the feed 

forward and radial basis function networks are coded, training and predicting properly. 

Fusion 

The model generates three outputs that need to be fused into a single estimate of 

free-flight reliability.  Per the generalized ensemble method, network outputs are 

Output Example 
Actual Pos Neg 
Pos True Pos False Neg 
Neg False Pos True Neg 
   

Output FF Training Results 
Actual Pos Neg 
Pos 10 0 
Neg 0 10 
   

Output FF Test Results 
Actual Pos Neg 
Pos 5 1 
Neg 0 4 
   

Output RBF Training Results 
Actual Pos Neg 
Pos 11 0 
Neg 0 9 
   

Output RBF Test Results 
Actual Pos Neg 
Pos 5 1 
Neg 1 3 
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combined into a single output matrix from which a matrix of correlation coefficients is 

generated.  Using the formulae described in Chapter 2 of this document, the model 

calculates weights that are applied to the network outputs and then summed to provide a 

single estimate of reliability.  Figure 18 illustrates an example of the GEM method as 

applied to the outputs generated by the model from the matrix of model inputs (Table 9). 

 
Table 13:  Training Outputs 

FY LR FF RBF 
90 0 0 0 
91 0 0 0 
92 77.64% 49.86% 60.37%
93 78.27% 79.35% 74.50%
94 78.26% 88.23% 73.89%
95 76.73% 74.34% 47.69%
96 77.85% 77.55% 79.10%
97 78.24% 69.67% 72.20%
98 76.75% 73.02% 97.27%
99 77.67% 85.00% 92.95%
00 78.28% 86.88% 89.91%
01 79.36% 92.58% 90.94%
02 79.96% 88.33% 89.07%

 
 

 
Table 14:  Correlation Matrix 

1 0.532873 0.370005 
0.532873 1 0.557086 
0.370005 0.557086 1

 
 
 

∑ ∑
∑

−

−

=
k j kj

j ij
i C

C
1

1

α      (27) 

 
 

Table 15:  GEM Weights 

 LR FF RBF 
iα  0.35427 0.296639 0.349091

 
 

Multiply elements in each column by the associated weight and add across the rows. 
 
e.g. 7940.349091.9094.296639.9258.35427.7936.01 =×+×+×=FYR   (28) 
 

Table 16:  Fused Outputs 

FY 90 91 92 93 94 95 96 97 

ZGEM 0 0 .6337 .7728 .7969 .6588 .7820 .7359 

FY 98 99 00 01 02 03 04  
ZGEM .8281 .8518 .8489 .8733 .8562 .8711 .7940 * Predictions 

Figure 18:  Generalized Ensemble Method (24-month Prediction Example) 
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Conversion to VBA 

Once the model logic is determined and validated, the code is converted into VBA 

and nested in the worksheet containing the missile ground test database.  In the course of 

conversion, the name ALCM/ACM Reliability Estimation System (AARES) was selected 

for the model.  The full version of the VBA code is presented in Appendix H.  The 

majority of the conversion consists of syntax changes and partitioning the Matlab code 

into major subroutines and adding a graphical user interface as well as other utility 

subroutines as listed below. 

1. GUI – collects user input parameters 

2. Main – calls all other subroutines based upon GUI inputs 

3. Capture – captures model input exemplars and target vector 

4. Logistic Regression Network – calculates reliability estimates and presents them 
in tabular format 

 
5. Feed-Forward Neural Network  – calculates reliability estimates and presents 

them in tabular format 
 

6. Radial Basis Function Network  – calculates reliability estimates and presents 
them in tabular format 

 
7. Fusion – fuses selected network outputs into a single number per year and 

presents them in tabular format 
 

8. Error – calculates sum of squared errors (SSE), mean squared errors (MSE) and 
root mean squared errors (RMSE) of each network output 

 
9. Charting – presents a graphical representation of the model outputs      
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IV.  Model Adequacy 

 
 

As stated previously in Chapter 1, the user desires a simple-to-use, standalone 

model that uses existing data and data collection, and provides a single estimate of cruise 

missile reliability up to 24 months in the future. 

The user starts on the worksheet containing the features selected from an existing 

ground test database, and flight test results collected over the past 13 years.  On the 

worksheet is a single button that starts the model and brings up the GUI (Figure 18).   

 
Figure 19:  Model Starting Worksheet 

 
Pressing the “AARES” button brings up the dialog box that allows the user to 

select the level of user interaction desired:  Custom or Quick Estimate (Figure 19).   
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Figure 20:  User Interaction Dialog Box 

 
“Custom” allows the user to set parameters for training, out-year prediction, runs 

over which to average, networks to use and associated stepsize, and number of middle 

layer neurodes for the FFN (if selected).  Instructions for entering data are included in 

dialog box.  Preset values are present in the input windows, pull-downs appear for 

entering the years for training and out-year prediction, and placing the cursor over an 

empty input box prompts a “pop-up” suggestion for entering a parameter.  Checks are in 

place to ensure the user selects at least one network and enters appropriate input box 

values (non-negative, numeric, ranging between 0 and 1, etc…see Figure 20). 
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Figure 21:  Model Custom GUI 

 
“Quick Estimate” allows the user to get a desired reliability estimate with minimal 

input.  The only required input is out-year prediction; all other values are preset in the 

code based upon best estimates divined in the course of model design (Figure 21). 
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Figure 22:  Quick Estimate Input Dialog Box 

 
After all inputs have been entered, the user presses the “Run” button and the 

model calculates reliability estimates based upon the inputs.  If the “Custom” option is 

selected, reliability estimates are presented in tabular format along with error estimates 

and a chart presenting a graphical representation of the model outputs (Figure 20). 
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Figure 23:  AARES Model Outputs – Custom 

 
For best results, the user should select one network, start with the suggested 

model parameters, and observe the model-generated chart and error values.  The user 

should then vary the stepsize to fit the best curve to the target vector.  Once the user has 

followed this procedure for each network, he/she can make the decision on which output 

(logistic regression, feed forward, radial basis function or fused output) gives the best 

reliability estimate.  In most cases, the fused output should give the best overall estimate. 

If the “Quick Estimate” is desired, the model runs as if all networks were selected 

in the “Custom” option and default values were used.  At the end of the run, the model 

presents a full-size chart with text in the upper-right corner displaying the desired 

reliability estimate (Figure 23). 
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Figure 24:  AARES Model Outputs – Quick Estimate 

 
As designed, the AARES model meets all the criteria set by the user (easy to use, 

standalone, existing data sources, single answer reliability estimate, 24-month prediction 

capability).   
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V.  Conclusions 

 
 

As stated in previously, the focus of this thesis is estimating ALCM free flight 

reliability.  Following the steps as listed in Chapter 3 should produce equally accurate 

results when using ACM flight test results or captive carry test results for either missile.  

It is merely a matter of compiling the database, selecting proper features, then applying 

the AARES VBA code to the data. 

With regard to maintenance, the user will be required to maintain the ground and 

flight test database.  The pass rates must be present on the “model” worksheet for 

AARES to capture them and calculate the estimates.  Simply “paste linking” the values 

into the worksheet as with previous years will suffice.  The model will self-adjust and 

capture the new values as they are added.  A new year of data will not be captured, 

however, until flight test results have been added. 

Furthermore, the VBA code has room for expansion.  The current version utilizes 

three neural networks: logistic regression, feed forward and radial basis function.  Dozens 

more exist, and once properly coded and validated, additional neural network subroutines 

could be added at the user’s discretion. 

One should note that AARES does not use time (FY) as an explicit model feature.  

In the course of development, some experimentation using FY as a feature was 

performed, but feature selection techniques eliminated the variable from consideration.  

Furthermore, the scale of the variable is different from the rest of the model features – 

resulting in poor estimates and large errors.  As a result, FY has not been included in the 

model other than as a label for the x-axis.  Instead, the model relies upon past ground and 
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flight test pass rates to estimate reliability.  If the user truly desires to have time included 

in the model, it becomes merely a matter of adding another column and making some 

minor code edits.  AARES self-adjusts to feature size as it does to exemplars. 

As a final note, the estimates produced by the AARES model are generated by 

statistically sound techniques, but the model suffers from the same shortcoming as 

previous logistic regression efforts:  lack of validation data.  Specifically, the cruise 

missile program simply does not have enough annual flight test events to provide a 

representative sample of the stockpile and thus generate a truly representative target 

vector for the model.  AARES alleviates the problem by using numerous ground tests as 

model features for estimating free flight reliability, however until the number of shots per 

year increases, the model outputs cannot be validated. 
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Appendix A:  Acronyms 
 
AARES     ALCM/ACM Reliability Estimation System 

ACC      Air Combat Command 

ACM      Advanced Cruise Missile 

ACR      Aircrew Reliability 

AF&F      Arming, Fuzing and Firing 

AGM-86     ALCM 

AGM-129     ACM 

AGR      Aircraft Generation Reliability 

ALCM      Air Launched Cruise Missile 

ASR      Aircraft Systems Reliability 

Auto-Cal     Automatic Calibration 

BA      Boost Adjustment 

BIT      Built-In Test 

BR      Boost Reliability 

BRT      Battle Readiness Test 

CA      Cruise Adjustment 

CCPR      Captive Carry Prelaunch Reliability 

CCR      Captive Carry Reliability 

CCTR      Captive Carry Transit Reliability 

CDF      Cumulative Distribution Function 

CR      Countdown Reliability 

CR1      Cruise Reliability 
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CR2      Carrier Reliability 

CSRL      Common Strategic Rotary Launcher 

DOE      Department of Energy 

D/R      Decoder/Receiver 

DR      Deployment Reliability 

FFCR      Free Flight Cruise Reliability 

FFER      Free Flight Endgame Reliability 

FFN      Feed-forward Neural Network 

FFR      Free Flight Reliability 

FFTR      Free Flight Transition to Cruise Reliability 

FGT      Functional Ground Test 

GEM      Generalized Ensemble Method 

GUI      Graphical User Interface 

ICBM      Intercontinental Ballistic Missile 

IMF      Integrated Maintenance Facility 

INE      Inertial Navigation Element 

JHU-APL     Johns Hopkins University Applied Physics  
Laboratory 
 

JILT      Joint Integrated Lab Test 

LI      Launch Interval 

LLT      Loaded Launcher Test 

LPT      Loaded Pylon Test 

LR      Launch Reliability 
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LR      Logistic Regression 

LWA      Launch Window Availability 

MA      Missile Adjustment 

MIT      Missile Interface Test 

MR      Missile Reliability 

MSE      Mean Squared Error 

NAT      Navigation Accuracy Test 

NSWC      Naval Surface Warfare Center 

OAS      Offensive Avionics System 

OC-ALC     Oklahoma City Air Logistics Center 

PFR      Platform Reliability 

PLA      Post-launch Assessment 

PR      Payload Reliability 

RBFN      Radial Basis Function Network 

RMSE      Root Mean Squared Error 

RR      Reentry Reliability 

RRB      Reentry Burst Reliability 

RRI      Reentry Inflight Reliability 

RRS      Reentry Separation Reliability 

RSR      Release System Reliability 

SIOP      Single Integrated Operational Plan 

SIT      System Interface Test 

SLBM      Sub-launched Ballistic Missile 
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SLT      Stockpile Lab Test 

SPACECOM     Space Command 

SPO      System Program Office 

SSE      Sum of Squared Errors 

TLAM      Tomahawk Land Attack Missile 

TO      Technical Order 

VBA      Visual Basic for Applications 

USSTRATCOM    United States Strategic Command 

WAM      Warhead Arming Monitor 

WDR      Weapon Delivery System Reliability 

WSR      Weapon System Reliability 

WSRT      Weapon System Readiness Test 
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Appendix B:  Notional Flight Test Data 
   Intercept -2.8380919  
   Coeff 0.23892478  

FY Result Number Relobs Rel Est Log Reg Results 
1 1 1  0.93 0.069192042 
1 1 1  0.93 0.069192042 
1 1 1  0.93 0.069192042 
1 1 1  0.93 0.069192042 
1 1 1  0.93 0.069192042 
1 1 1  0.93 0.069192042 
1 1 1  0.93 0.069192042 
1 1 1  0.93 0.069192042 
1 1 1  0.93 0.069192042 
1 1 1 1  0.93 0.069192042 
2 1 1  0.91 0.086255093 
2 1 1  0.91 0.086255093 
2 1 1  0.91 0.086255093 
2 1 1  0.91 0.086255093 
2 1 1  0.91 0.086255093 
2 0 1  0.91 0.086255093 
2 1 1  0.91 0.086255093 
2 1 1 0.88  0.91 0.086255093 
3 1 1  0.89 0.107042068 
3 1 1  0.89 0.107042068 
3 1 1  0.89 0.107042068 
3 0 1  0.89 0.107042068 
3 1 1 0.8  0.89 0.107042068 
4 1 1  0.87 0.132114276 
4 1 1  0.87 0.132114276 
4 1 1  0.87 0.132114276 
4 1 1 1  0.87 0.132114276 
5 1 1  0.84 0.161993723 
5 1 1  0.84 0.161993723 
5 0 1  0.84 0.161993723 
5 1 1 0.75  0.84 0.161993723 
6 1 1  0.80 0.197096161 
6 1 1  0.80 0.197096161 
6 1 1  0.80 0.197096161 
6 0 1 0.75  0.80 0.197096161 
7 1 1  0.76 0.237647885 
7 1 1  0.76 0.237647885 
7 0 1 0.67  0.76 0.237647885 
8 0 1  0.72 0.28359598 
8 1 1 0.5  0.72 0.28359598 
9 1 1  0.67 0.334529581 
9 1 1 1  0.67 0.334529581 

10 0 1  0.61 0.389635627 
10 1 1  0.61 0.389635627 
10 1 1 0.67  0.61 0.389635627 
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Appendix C:  Ground Test Data 
 
 

CY LLT A LLT B SIT MIT Level 1 A Level 1 B Level 3 B INE Prev Yr Flt Test
90 96.03% 58.70% 88.95% 93.88% 82.66% 27.00% 33.33% 94.10% 67.00% 75.00%
91 95.63% 52.83% 96.34% 96.84% 81.87% 16.00% 33.33% 95.60% 75.00% 75.00%
92 95.32% 36.11% 98.79% 99.10% 78.63% 33.63% 25.00% 97.45% 75.00% 50.00%
93 93.98% 82.50% 93.64% 98.18% 79.57% 29.52% 33.33% 95.15% 50.00% 67.00%
94 93.13% 73.83% 96.74% 98.75% 80.43% 24.00% 46.15% 95.42% 67.00% 75.00%
95 94.44% 81.82% 94.90% 96.84% 81.22% 23.68% 64.52% 95.37% 75.00% 50.00%
96 95.04% 92.56% 84.62% 99.00% 79.07% 40.00% 84.00% 96.94% 50.00% 67.00%
97 95.00% 80.95% 100.00% 97.96% 78.05% 20.37% 45.45% 94.39% 67.00% 75.00%
98 95.09% 76.92% 93.72% 98.65% 79.58% 38.33% N/R 93.72% 75.00% 100.00%
99 94.97% 77.38% 91.18% 97.67% 73.49% 37.78% 100.00% 93.14% 100.00% 100.00%
00 95.48% 66.67% 100.00% 99.37% 83.46% 47.37% 16.67% 96.48% 100.00% 100.00%
01 96.19% 35.48% 100.00% 99.21% 71.10% 28.95% 0.00% 90.65% 100.00% 75.00%
02 92.06% N/R #DIV/0! 99.46% 55.15% 34.78% 50.00% 84.13% 75.00% 100.00%

           
 estimated data         
 N/R  none recorded         
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Appendix D:  SAS Factor Analysis Output 
 
                                          The SAS System         15:28 Friday, January 17, 2003   3 
 
                                       The FACTOR Procedure 
                            Initial Factor Method: Principal Components 
 
                               Prior Communality Estimates: ONE 
 
 
                   Eigenvalues of the Correlation Matrix: Total = 6  Average = 1 
 
                           Eigenvalue    Difference    Proportion    Cumulative 
 
                      1    2.57942941    0.93849633        0.4299        0.4299 
                      2    1.64093307    0.64655285        0.2735        0.7034 
                      3    0.99438022    0.49333963        0.1657        0.8691 
                      4    0.50104060    0.25566604        0.0835        0.9526 
                      5    0.24537455    0.20653240        0.0409        0.9935 
                      6    0.03884215                      0.0065        1.0000 
 
                       3 factors will be retained by the NFACTOR criterion. 
 
 
                                          Factor Pattern 
 
                                            Factor1         Factor2         Factor3 
 
               LLTA         LLTA            0.68941         0.48964        -0.34507 
               SIT          SIT            -0.26020         0.78118         0.28509 
               MIT          MIT            -0.56918         0.29065         0.64160 
               Level1A      Level1A         0.94058         0.13506         0.22390 
               INE          INE             0.87664         0.11866         0.42382 
               PrevYr       PrevYr         -0.24349         0.82106        -0.39067 
 
 
                                 Variance Explained by Each Factor 
 
                               Factor1         Factor2         Factor3 
 
                             2.5794294       1.6409331       0.9943802 
 
 
                           Final Communality Estimates: Total = 5.214743 
 
          LLTA             SIT             MIT         Level1A             INE          PrevYr 
 
    0.83410138      0.75922666      0.82009747      0.95306195      0.96220513      0.88605012 
 
 
                                          The SAS System         15:28 Friday, January 17, 2003   4 
 
                                       The FACTOR Procedure 
                                     Rotation Method: Varimax 
 
                                 Orthogonal Transformation Matrix 
 
                                            1               2               3 
 
                            1         0.89460        -0.05157        -0.44389 
                            2         0.24031         0.89299         0.38056 
                            3         0.37676        -0.44712         0.81126 
 
 
                                      Rotated Factor Pattern 
 
                                            Factor1         Factor2         Factor3 
 
               LLTA         LLTA            0.60440         0.55597        -0.39962 
               SIT          SIT             0.06236         0.58353         0.64407 
               MIT          MIT            -0.19761         0.00203         0.88377 
               Level1A      Level1A         0.95825        -0.02802        -0.18447 
               INE          INE             0.97243        -0.12875        -0.00015 
               PrevYr       PrevYr         -0.16770         0.92043         0.10361 
 
 
                                 Variance Explained by Each Factor 
 
                               Factor1         Factor2         Factor3 
 
                             2.3002360       1.5141744       1.4003323 
 
 
                           Final Communality Estimates: Total = 5.214743 
 
          LLTA             SIT             MIT         Level1A             INE          PrevYr 
 
    0.83410138      0.75922666      0.82009747      0.95306195      0.96220513      0.88605012 
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Appendix E:  MATLAB Logistic Regression Code 
 
clc 
clear 
% input matrix 
%MIT  Level 1A Prev Yr Flt Test 
x=[0.9388  0.8266  0.6700  0.7500 
0.9684 0.8187 0.7500 0.7500 
0.9910 0.7863 0.7500 0.5000 
0.9818 0.7957 0.5000 0.6700 
0.9875 0.8043 0.6700 0.7500 
0.9684 0.8122 0.7500 0.5000 
0.9900 0.7907 0.5000 0.6700 
0.9796 0.7805 0.6700 0.7500 
0.9865 0.7958 0.7500 1.0000 
0.9767 0.7349 1.0000 1.0000 
0.9937 0.8346 1.0000 1.0000 
0.9921 0.7110 1.0000 0.7500 
0.9946 0.5515 0.7500 1.0000]; 
 
%number of exemplars upon which to train 
tr = 13;  
% number of out-years to predict 
yr = 0; 
 
% logistic regression (instantaneous) 
% output training vector 
z=[]; 
% output prediction vector 
zvr=[]; 
% weight vector 
w=[]; 
% weight gradient vector 
dw=[]; 
%sets nfeat = to the number of columns 
nfeat=size(x,2);  
 
% zero out weights 
for ii=1:nfeat 
    w(ii)=0; 
end 
 
%adds a bias column of 1's to the left of side of matrix x 
x=[ones(size(x,1),1) x];  
%sets number of iterations for code to run through 
iter=1000;  
%sets stepsize = .001 
stepsize=.001;  
% used as a comparator to know when to stop increasing iterations 
prevtoterr = 1;  
% parameter that tells the code when to stop (when decreases in toterr become very small) 
toterr = 0;  
% transpose x matrix to keep with Looney convention 
x=x'; 



 

65 

% loops through with increasing number of iterations until graph stabilizes 
% and converges -- when toterr changes very little 
while abs(prevtoterr-toterr) > .001 
    prevtoterr=toterr; 
    for i=1:iter 
        toterr=0.0; % zeros out total error 
        for ii=1:nfeat 
            dw(ii)=0; % zeros out dw, differential of the error 
        end 
        for j=1+yr:tr+yr %j runs from 1 down the number of rows 
            z(j)=0.0; % initializes Yhatj at zero (estimated value) 
            for k=1:nfeat % runs from 1 across the number of columns 
                z(j)=z(j)+w(k)*x(k,j-yr); % sets Yhat = previous_Yhat + weight*current x_value,  x_value 
changes across the columns 
            end % does this across the columns 
            z(j)=(1./(1.+exp(-1.0*z(j)))); % call the sigmoid file and do it's thing with the z_matrix element 
            for l=1:nfeat %l runs across the columns 
                dw(l)=(z(j)-x(nfeat+1,j))*z(j)*(1.-z(j))*x(l,j-yr); % cumes all the differentials of the errors 
                w(l)=w(l)-stepsize*dw(l); % steps in the direction opposite the error, converges toward the "true" 
weights/b_knot and b_one 
            end 
            toterr=toterr+(z(j)-x(nfeat+1,j))^2; % cumes total error per iteration 
        end 
    end 
    toterr; 
    % sets number of iterations to run through next depending upon changes 
    % in toterr 
    if abs(prevtoterr-toterr)>.01 
        iter = iter+1000; 
    else 
        iter = iter+500; 
    end 
end 
 
% plot the regression and the flight test results 
axis([0 16 .5 1.1]) 
xlabel('Calendar Year') 
ylabel('Reliability %') 
hold on 
plot(x(nfeat+1,:),'m --' ) 
plot(z,'b') 
 
% logreg prediction code 
if tr < size(x,2) 
    for n=tr+1+yr:size(x,2)+yr 
        zvr(n)=0.0; 
        for k=1:nfeat 
            zvr(n) = zvr(n) + w(k)*x(nfeat+1,n-yr); 
        end % end k loop 
        zvr(n)=1/(1+exp(-(zvr(n)))); 
    end % end n loop 
    plot(zvr,'b :') 
end % end year check 
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Appendix F:  Matlab Reliability Model Code 
 
clc 
clear 
% input matrix 
%MIT  Level 1A Prev Yr Flt Test 
x=[0.9388  0.8266  0.6700   0.7500 
0.9684 0.8187 0.7500 0.7500 
0.9910 0.7863 0.7500 0.5000 
0.9818 0.7957 0.5000 0.6700 
0.9875 0.8043 0.6700 0.7500 
0.9684 0.8122 0.7500 0.5000 
0.9900 0.7907 0.5000 0.6700 
0.9796 0.7805 0.6700 0.7500 
0.9865 0.7958 0.7500 1.0000 
0.9767 0.7349 1.0000 1.0000 
0.9937 0.8346 1.0000 1.0000 
0.9921 0.7110 1.0000 0.7500 
0.9946 0.5515 0.7500 1.0000]; 
 
%number of exemplars upon which to train 
tr = 13;  
% number of out-years to predict 
yr = 0; 
 
% logistic regression (instantaneous) 
% output training vector 
z=[]; 
% output prediction vector 
zvr=[]; 
% weight vector 
w=[]; 
% weight gradient vector 
dw=[]; 
%sets nfeat = to the number of columns 
nfeat=size(x,2);  
 
% zero out weights 
for ii=1:nfeat 
    w(ii)=0; 
end 
 
%adds a bias column of 1's to the left of side of matrix x 
x=[ones(size(x,1),1) x];  
%sets number of iterations for code to run through 
iter=1000;  
%sets stepsize = .001 
stepsize=.001;  
% used as a comparator to know when to stop increasing iterations 
prevtoterr = 1;  
% parameter that tells the code when to stop (when decreases in toterr become very small) 
toterr = 0;  
% transpose x matrix to keep with Looney convention 
x=x'; 
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% loops through with increasing number of iterations until graph stabilizes 
% and converges -- when toterr changes very little 
while abs(prevtoterr-toterr) > .001 
    prevtoterr=toterr; 
    for i=1:iter 
        toterr=0.0; % zeros out total error 
        for ii=1:nfeat 
            dw(ii)=0; % zeros out dw, differential of the error 
        end 
        for j=1+yr:tr+yr %j runs from 1 down the number of rows 
            z(j)=0.0; % initializes Yhatj at zero (estimated value) 
            for k=1:nfeat % runs from 1 across the number of columns 
                z(j)=z(j)+w(k)*x(k,j-yr); % sets Yhat = previous_Yhat + weight*current x_value,  x_value 
changes across the columns 
            end % does this across the columns 
            z(j)=(1./(1.+exp(-1.0*z(j)))); % call the sigmoid file and do it's thing with the z_matrix element 
            for l=1:nfeat %l runs across the columns 
                dw(l)=(z(j)-x(nfeat+1,j))*z(j)*(1.-z(j))*x(l,j-yr); % cumes all the differentials of the errors 
                w(l)=w(l)-stepsize*dw(l); % steps in the direction opposite the error, converges toward the "true" 
weights/b_knot and b_one 
            end 
            toterr=toterr+(z(j)-x(nfeat+1,j))^2; % cumes total error per iteration 
        end 
    end 
    toterr; 
    % sets number of iterations to run through next depending upon changes 
    % in toterr 
    if abs(prevtoterr-toterr)>.01 
        iter = iter+1000; 
    else 
        iter = iter+500; 
    end 
end 
 
% plot the regression and the flight test results 
axis([0 16 .5 1.1]) 
xlabel('Calendar Year') 
ylabel('Reliability %') 
hold on 
plot(x(nfeat+1,:),'m --' ) 
plot(z,'b') 
 
% logreg prediction code 
if tr < size(x,2) 
    for n=tr+1+yr:size(x,2)+yr 
        zvr(n)=0.0; 
        for k=1:nfeat 
            zvr(n) = zvr(n) + w(k)*x(k,n-yr); 
        end % end k loop 
        zvr(n)=1/(1+exp(-(zvr(n)))); 
    end % end n loop 
    plot(zvr,'b :') 
end % end year check 
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% reset input matrix, strip off bottom row of flight test results 
flttest=x(nfeat+1,:); 
x(nfeat+1,:)=[]; 
nfeat=size(x,1); 
ncols=size(x,2); 
 
% average of output runs 
zzz=[]; 
% average of prediction runs 
zvv=[]; 
% lower layer output matrix 
zz=[]; 
% verification output matrix 
zv=[]; 
 
% loop through a few times to get an average of the output values 
for count=1:10 
% set stepsize 
nu=.7; 
% upper layer output row vector 
y=[]; 
% middle layer weights matrix 
w=[]; 
% upper layer weights matrix 
u=[]; 
% middle layer summations weight gradients 
dw=[]; 
% matrix of targets -- flight test results 
t=flttest; 
% number of midddle layer neurodes 
M=5; 
% number of output layer neurodes 
J=size(t,1); 
% number of inputs (features) 
N=size(x,1); 
% number of exemplars to run through 
Q=tr; 
% set number of iterations 
iter=1500; 
% setting initial weights 
for m=1:M 
    for n=1:N 
        w(n,m)=unifrnd(-0.2, 0.2); 
    end 
    for j=1:J 
        u(m,j)=unifrnd(-0.2, 0.2); 
    end 
end % end m loop, setting initial weights 
 
prevtoterr=1; 
toterr=0; 
while abs(prevtoterr-toterr)>.001 
    prevtoterr=toterr; 
    % initialize iterations 



 

69 

    for i=1:iter 
        toterr=0.0; 
        % run down the rows of exemplars 
        for q=1+yr:Q+yr 
            % zero out outputs 
            for j=1:J 
                zz(j,q,count)=0; 
            end % end j loop, zero out outputs 
            for n=1:N 
                for m=1:M 
                    dw(n,m)=0; 
                end % end m loop 
            end % end n loop, zero out summation portion of middle layer weight gradients 
            for m=1:M 
                %calculate middle layer outputs 
                y(m)=0.0; 
                for n=1:N 
                    y(m) = y(m) + w(n,m)*x(n,q-yr); 
                end % end n loop, sum across middle layer prior to squashing 
                % calculate sigmoid of middle layer outputs -- squash 'em 
                y(m)=1/(1+exp(-(y(m)))); 
            end % end m loop, middle layer outputs 
            % calculate outputs 
            for j=1:J 
                for m=1:M 
                    zz(j,q,count) = zz(j,q,count) + u(m,j)*y(m); 
                end % end m loop, sum across the outputs prior to squashing 
                % calculate sigmoid of outputs -- squash 'em 
                zz(j,q,count)=1/(1+exp(-(zz(j,q,count)))); 
            end % end j loop, new output loop 
            % adjust weights 
            for m=1:M 
                % calculate new upper layer weights 
                for j=1:J 
                    u(m,j) = u(m,j) + nu*((t(j,q) - zz(j,q,count))*zz(j,q,count)*(1 - zz(j,q,count))*y(m)); 
                end % end j loop, uppper layer weight update 
                % calculate summation portion of gradient for middle layer 
                for n=1:N 
                    for j=1:J 
                        dw(n,m) = dw(n,m) + (t(j,q) - zz(j,q,count))*(zz(j,q,count)*(1 - zz(j,q,count)))*u(m,j); 
                    end % end j loop cume portion of middle layer weight gradient 
                    % calculate middle layer weights 
                    w(n,m) = w(n,m) + nu*dw(n,m)*(y(m)*(1 - y(m))*x(n,q-yr)); 
                end % end n loop middle layer weight adjustments 
            end % end m loop, weight adjustments 
            % calculate SSE 
            for j=1:J 
                toterr=toterr+(zz(j,q,count)-t(j,q))^2; 
            end % end toterr cume loop 
        end % end q loop number of exemplars on which to train 
    end %end iteration loop 
    if abs(prevtoterr-toterr)>.005 
        iter = iter+100; 
    else 
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        iter = iter+50; 
    end % end iteration step-check loop 
end % end .001 while loop 
 
% verify weights developed during training -- attempt to predict current year or out-year flight 
% test results within data set 
if tr < size(x,2) 
    for q=Q+1+yr:size(x,2)+yr 
        for j=1:J 
            zv(j,q,count)=0.0; 
        end 
        for m=1:M 
            y(m)=0.0; 
            for n=1:N 
                y(m) = y(m) + w(n,m)*x(n,q-yr); 
            end 
            y(m)=1/(1+exp(-(y(m)))); 
            for j=1:J 
                zv(j,q,count) = zv(j,q,count) + u(m,j)*y(m); 
            end 
        end 
        for j=1:J 
            zv(j,q,count)=1/(1+exp(-(zv(j,q,count)))); 
        end 
    end % end verification loop 
end % end prediction test 
end  % end count loop 
 
% calculate average of the runs and display 
zzz = mean(zz,3); 
plot(zzz,'r') 
hold on 
 
if tr < size(x,2) 
    zvv = mean(zv,3); 
    plot(zvv,'r :') 
end 
 
% RBFN code 
% set output vectors 
zrb=[]; 
zrbt=[]; 
zzrb=[]; 
zzrbt=[]; 
 
% loop through a few times and get an averaqe 
for count=1:10 
% set stepsize 
nu=1.0; 
% upper layer output row vector 
y=[]; 
% middle layer neurode centers 
v=[]; 
% upper layer weights matrix 
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u=[]; 
% middle layer summations weight gradients 
dw=[]; 
% summation matrix for distance calculation 
addup=[]; 
% number of inputs (features) 
N=size(x,1); 
% number of output layer neurodes 
J=size(t,1); 
% number of exemplars to run through 
Q=tr; 
% number of midddle layer neurodes 
M=Q; 
% set number of iterations 
iter=100; 
%compute single spread parameter 
sigma=1/((2*M)^(1/N)); 
%sigma = 0.9; 
% setting initial weights, neurode centers, and neurode spread parameters 
for m=1:M 
    for j=1:J 
        u(m,j)=unifrnd(-0.5, 0.5); 
    end % end J loop 
end % end m loop, setting initial weights 
v=x; 
 
% used as a comparator to know when to stop increasing iterations 
prevtoterr = 1.0;  
% parameter that tells the code when to stop (when decreases in toterr become very small) 
toterr = 0; 
% calculate difference vector 
for q=1+yr:Q+yr 
    for m=1:M 
        distnc=0; 
        for n=1:N 
            distnc = distnc + (x(n,q-yr)-v(n,m))^2; 
        end 
        addup(m,q) = distnc; 
    end 
end 
    
% compute y(m,q) 
for q=1+yr:Q+yr 
    for m=1:M 
        if q == m 
           y(m,q)=1; 
       else 
           y(m,q)=exp(-(addup(m,q))/(2*(sigma^2))); 
       end % end if test 
   end % end m loop 
end % end q loop 
 
% train the network                     
while abs(prevtoterr-toterr)>.00001 
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    prevtoterr=toterr; 
    % initialize iterations 
    for i=1:iter 
        toterr=0; 
        for m=1:M 
            for j=1:J 
                du(m,j)=0; 
                for q=1+yr:Q+yr 
                    dw(j,q)=0; 
                end % end q loop 
            end % end j loop 
        end % end m loop 
        % compute new outputs 
        for q=1+yr:Q+yr 
            for j=1:J 
                for m=1:M 
                    dw(j,q) = dw(j,q) + (u(m,j)*y(m,q)); 
                end % end m loop 
            end % end j loop 
        end % end new output loops 
        for q=1+yr:Q+yr 
            for j=1:J 
                zrb(j,q,count) = dw(j,q)/M; 
            end % end j loop 
        end % end q loop 
        % SSE calculation 
        for q=1+yr:Q+yr 
            for j=1:J 
                toterr = toterr + ((t(j,q) - zrb(j,q,count))^2); 
            end % end j loop 
        end % end error calculation 
        if toterr<prevtoterr 
            nu=nu*1.04; 
        else 
            nu=nu*0.92; 
        end % end new stepsize check 
        % adjust weights 
        for m=1:M 
            for j=1:J 
                for q=1+yr:Q+yr 
                    du(m,j) = du(m,j) + ((t(j,q) - zrb(j,q,count))*y(m,q)); 
                end % end q loop 
            end % end j loop 
        end % end m loop 
        for m=1:M 
            for j=1:J 
                u(m,j) = u(m,j) + ((2*nu)/M)*du(m,j); 
            end % end j loop 
        end % end m loop 
    end % end iteration loop 
end % end tolerance loop 
 
% test middle layer outputs 
ytest=[]; 
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% verify test data 
if tr < size(x,2) 
    for q=Q+1+yr:size(x,2)+yr 
        % zero out output matrix 
        for j=1:J 
            zrbt(j,q,count)=0; 
        end % end j loop 
        % calculate distances from center 
        for m=1:M 
            distnc=0; 
            for n=1:N 
                distnc = distnc + (x(n,q-yr)-v(n,m))^2; 
            end % end n loop 
            addup(m,q) = distnc; 
        end % end m loop 
    end % end q loop 
    % compute ytest(m,q) 
    for q=Q+1+yr:size(x,2)+yr 
        for m=1:M 
            ytest(m,q)=exp(-(addup(m,q))/(2*(sigma^2))); 
        end % end m loop 
    end % end q loop 
    % compute outputs 
    for q=Q+1+yr:size(x,2)+yr 
        for j=1:J 
            adduys=0; 
            for m=1:M 
                adduys=adduys+u(m,j)*ytest(m,q); 
            end % end m loop 
            zrbt(j,q,count)=adduys/M; 
        end % end j loop 
    end % end q loop 
end % end prediction test 
end % end count loop 
 
zzrb=mean(zrb,3); 
plot(zzrb,'k'); 
 
if tr < size(x,2) 
    zzrbt=mean(zrbt,3); 
    plot(zzrbt,'k :') 
end 
 
% fuse the outputs from the three nets 
% set up matrices and strip off any zero rows 
Z=[z' zzz' zzrb'] 
for i=1:yr 
    Z(1,:)=[]; 
end 
     
corrZ=corrcoef(Z) 
denomalpha=0; 
alpha=[]; 
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Zgem=[]; 
ZZgem=[]; 
 
for i=1:size(corrZ,2) 
    for j=1:size(corrZ,1) 
        denomalpha=denomalpha+(1/corrZ(i,j)); 
    end 
end 
 
for i=1:size(corrZ,2) 
    numalpha=0; 
    for j=1:size(corrZ,1) 
        numalpha=numalpha+(1/corrZ(i,j)); 
    end 
    alpha(i)=numalpha/denomalpha; 
end 
 
for q=1:size(Z,1) 
    Zgem(q)=0; 
    for i=1:size(Z,2) 
        Zgem(q)=Zgem(q)+alpha(i)*Z(q,i); 
    end 
end 
 
% add offset back into fused results vector 
if yr > 0 
    for i=1:yr 
        Zgem=[zeros(size(Zgem,1),1),Zgem]; 
    end 
end 
 
Zgem 
plot(Zgem, 'g') 
 
% calculate fused prediction 
if tr < size(x,2) 
    ZZ=[zvr' zvv' zzrbt'] 
    for i=1:tr+yr 
        ZZ(1,:)=[]; 
    end 
     
    for q=1:size(ZZ,1) 
        ZZgem(q)=0; 
        for i=1:size(ZZ,2) 
            ZZgem(q)=ZZgem(q)+alpha(i)*ZZ(q,i); 
        end 
    end 
 
    % add offset back into fused results vector 
    for i=1:tr+yr 
        ZZgem=[zeros(size(ZZgem,1),1),ZZgem]; 
    end 
    ZZgem 
    plot(ZZgem, 'g :') 



 

75 

end % end if check 
 
% calculate RMSEs of the two methods 
sumrmselr=0; 
sumrmseff=0; 
sumrmserb=0; 
sumrmseZ=0; 
rmselr=0; 
rmseff=0; 
rmserb=0; 
rmseZ=0; 
% SSE of training points 
for q=1+yr:tr+yr 
    sumrmselr = sumrmselr + (z(q)-t(1,q-yr))^2; 
    sumrmseff = sumrmseff + (zzz(q)-t(1,q-yr))^2; 
    sumrmserb = sumrmserb + (zzrb(q)-t(1,q-yr))^2; 
    sumrmseZ = sumrmseZ + (Zgem(q)-t(1,q-yr))^2; 
end 
% SSE of prediction points 
if tr < size(x,2) 
    for q=tr+1+yr:size(x,2)+yr 
        sumrmselr = sumrmselr + (zvr(q)-t(1,q-yr))^2; 
        sumrmseff = sumrmseff + (zvv(q)-t(1,q-yr))^2; 
        sumrmserb = sumrmserb + (zzrbt(q)-t(1,q-yr))^2; 
        sumrmseZ = sumrmseZ + (ZZgem(q)-t(1,q-yr))^2; 
    end 
end 
rmselr = sqrt(sumrmselr/size(t,2)) 
rmseff = sqrt(sumrmseff/size(t,2)) 
rmserb = sqrt(sumrmserb/size(t,2)) 
rmseZ = sqrt(sumrmseZ/size(t,2)) 
 
% add a legend to the graph 
if tr < size(x,2) 
    legend('Actual', 'LogReg Training', 'LogReg Prediction', 'FFN Training', 'FFN Prediction', 'RBFN 
Training', 'RBFN Prediction', 'Fused Training', 'Fused Prediction', 2) 
else 
    legend('Actual', 'LogReg Results', 'FFN Results', 'RBFN Results','Fused Results', 2); 
end 
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Appendix G:  Matlab Validation Code 
 
Logistic Regression Validation 
clc 
clear 
% input matrix 
% generate training data points and populate into matrix 
x=unifrnd(0,1,30,1); 
 
% gin up a simple relationship between x and y 
for i=1:size(x,1) 
    t(i)=x(i); 
end 
t=t'; 
x=[x t]; 
 
% number of out-years to predict 
yr = 0; 
tr=20; 
 
% logistic regression (instantaneous) 
% output training vector 
z=[]; 
% output prediction vector 
zvr=[]; 
% weight vector 
w=[]; 
% weight gradient vector 
dw=[]; 
%sets nfeat = to the number of columns 
nfeat=size(x,2);  
% zero out weights 
for ii=1:nfeat 
    w(ii)=0; 
end 
 
%adds a bias column of 1's to the left of side of matrix x 
x=[ones(size(x,1),1) x];  
%sets number of iterations for code to run through 
iter=1000;  
%sets stepsize = .001 
stepsize=.001;  
% used as a comparator to know when to stop increasing iterations 
prevtoterr = 1;  
% parameter that tells the code when to stop (when decreases in toterr become very small) 
toterr = 0;  
% transpose x matrix to keep with Looney convention 
x=x'; 
 
% loops through with increasing number of iterations until graph stabilizes 
% and converges -- when toterr changes very little 
while abs(prevtoterr-toterr) > .00000001 
    prevtoterr=toterr; 
    for i=1:iter 
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        toterr=0.0; % zeros out total error 
        for ii=1:nfeat 
            dw(ii)=0; % zeros out dw, differential of the error 
        end 
        for j=1+yr:tr+yr %j runs from 1 down the number of rows 
            z(j)=0.0; % initializes Yhatj at zero (estimated value) 
            for k=1:nfeat % runs from 1 across the number of columns 
                z(j)=z(j)+w(k)*x(k,j-yr); % sets Yhat = previous_Yhat + weight*current x_value,  x_value 
changes across the columns 
            end % does this across the columns 
            z(j)=(1./(1.+exp(-1.0*z(j)))); % call the sigmoid file and do it's thing with the z_matrix element 
            for l=1:nfeat %l runs across the columns 
                dw(l)=(z(j)-x(nfeat+1,j))*z(j)*(1.-z(j))*x(l,j-yr); % cumes all the differentials of the errors 
                w(l)=w(l)-stepsize*dw(l); % steps in the direction opposite the error, converges toward the "true" 
weights/b_knot and b_one 
            end 
            toterr=toterr+(z(j)-x(nfeat+1,j))^2; % cumes total error per iteration 
        end 
    end 
    toterr; 
    % sets number of iterations to run through next depending upon changes 
    % in toterr 
    if abs(prevtoterr-toterr)>.01 
        iter = iter+1000; 
    else 
        iter = iter+500; 
    end 
end 
 
 
w 
toterr 
 
% logreg prediction code 
if tr < size(x,2) 
    for n=tr+1+yr:size(x,2)+yr 
        zvr(n)=0.0; 
        for k=1:nfeat 
            zvr(n) = zvr(n) + w(k)*x(k,n-yr); 
        end % end k loop 
        zvr(n)=1/(1+exp(-(zvr(n)))); 
    end % end n loop 
end % end year check 
 
% plot the regression and the flight test results 
axis([0 1 0 1]) 
xlabel('x') 
ylabel('y') 
title('Logistic Regression') 
hold on 
 
plot(x(2,1),t(1,1),'b *') 
plot(x(2,1),z(1),'k +') 
plot(x(2,tr+1),zvr(tr+1),'r o') 
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legend('Actual','LogReg Training','LogReg Prediction', 2) 
for i=1:size(x,2) 
    plot(x(2,i),t(i,1),'b *') 
end 
for i=1:tr 
    plot(x(2,i),z(i),'k +') 
end 
for i=tr+1:size(x,2) 
    plot(x(2,i),zvr(i),'r o') 
end 
 
Feed Forward Validation 
clc 
clear 
% input matrix 
% generate training data points and populate into matrix 
x=unifrnd(-1,1,30,2); 
 
% plot the points 
for i=1:size(x,1) 
    plot(x(i,2),x(i,1),'*') 
    hold on 
end 
 
% create target vector based upon discriminator lines 
% let (0,1) denote quad 2-4 membership, let (1,0) denote quad 1-3 membership 
T=[]; 
 
for i=1:size(x,1) 
    if (x(i,1) > 0 & x(i,2) > 0) | (x(i,1) < 0 & x(i,2) < 0) 
        T(i,1)=1; 
    else 
        T(i,2)=1; 
    end 
end 
 
% adds a bias column of 1's to the left of side of matrix x 
x=[ones(size(x,1),1) x];  
 
% number of exemplars upon which to train 
tr = 20;  
% number of years to predict ahead (0=current year estimates) 
yr = 0; 
% transpose input matrix,  
x=x'; 
% average of output runs 
zzz=[]; 
% average of prediction runs 
zvv=[]; 
% lower layer output matrix 
zz=[]; 
% verification output matrix 
zv=[]; 
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% loop through a few times to get an average of the output values 
for count=1:1 
% set stepsize 
nu=.01; 
% upper layer output row vector 
y=[]; 
% middle layer weights matrix 
w=[]; 
% upper layer weights matrix 
u=[]; 
% middle layer summations weight gradients 
dw=[]; 
% matrix of targets -- flight test results 
t=T'; 
% number of midddle layer neurodes 
M=2*size(t,1); 
% number of output layer neurodes 
J=size(t,1); 
% number of inputs (features) 
N=size(x,1); 
% number of exemplars to run through 
Q=tr; 
% set number of iterations 
iter=1000; 
% setting initial weights 
for m=1:M 
    for n=1:N 
        w(n,m)=unifrnd(-0.2, 0.2); 
    end 
    for j=1:J 
        u(m,j)=unifrnd(-0.2, 0.2); 
    end 
end % end m loop, setting initial weights 
 
prevtoterr=1; 
toterr=0; 
while abs(prevtoterr-toterr)>.01 
    prevtoterr=toterr; 
    % initialize iterations 
    for i=1:iter 
        toterr=0.0; 
        % run down the rows of exemplars 
        for q=1+yr:Q 
            % zero out outputs 
            for j=1:J 
                zz(j,q,count)=0; 
            end % end j loop, zero out outputs 
            for n=1:N 
                for m=1:M 
                    dw(n,m)=0; 
                end % end m loop 
            end % end n loop, zero out summation portion of middle layer weight gradients 
            for m=1:M 
                %calculate middle layer outputs 
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                y(m)=0.0; 
                for n=1:N 
                    y(m) = y(m) + w(n,m)*x(n,q-yr); 
                end % end n loop, sum across middle layer prior to squashing 
                % calculate sigmoid of middle layer outputs -- squash 'em 
                y(m)=1/(1+exp(-(y(m)))); 
            end % end m loop, middle layer outputs 
            % calculate outputs 
            for j=1:J 
                for m=1:M 
                    zz(j,q,count) = zz(j,q,count) + u(m,j)*y(m); 
                end % end m loop, sum across the outputs prior to squashing 
                % calculate sigmoid of outputs -- squash 'em 
                zz(j,q,count)=1/(1+exp(-(zz(j,q,count)))); 
            end % end j loop, new output loop 
            % adjust weights 
            for m=1:M 
                % calculate new upper layer weights 
                for j=1:J 
                    u(m,j) = u(m,j) + nu*((t(j,q) - zz(j,q,count))*zz(j,q,count)*(1 - zz(j,q,count))*y(m)); 
                end % end j loop, uppper layer weight update 
                % calculate summation portion of gradient for middle layer 
                for n=1:N 
                    for j=1:J 
                        dw(n,m) = dw(n,m) + (t(j,q) - zz(j,q,count))*(zz(j,q,count)*(1 - zz(j,q,count)))*u(m,j); 
                    end % end j loop cume portion of middle layer weight gradient 
                    % calculate middle layer weights 
                    w(n,m) = w(n,m) + nu*dw(n,m)*(y(m)*(1 - y(m))*x(n,q-yr)); 
                end % end n loop middle layer weight adjustments 
            end % end m loop, weight adjustments 
            % calculate SSE 
            for j=1:J 
                toterr=toterr+(zz(j,q,count)-t(j,q))^2; 
            end % end toterr cume loop 
        end % end q loop number of exemplars on which to train 
    end %end iteration loop 
    if abs(prevtoterr-toterr)>.005 
        iter = iter+1000; 
    else 
        iter = iter+500; 
    end % end iteration step-check loop 
end % end .01 tolerance while loop 
 
% verify weights developed during training -- attempt to predict current year or out-year flight 
% test results within data set 
if tr < size(x,2) 
    for q=Q+1:size(x,2)+yr 
        for j=1:J 
            zv(j,q,count)=0.0; 
        end 
        for m=1:M 
            y(m)=0.0; 
            for n=1:N 
                y(m) = y(m) + w(n,m)*x(n,q-yr); 
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            end 
            y(m)=1/(1+exp(-(y(m)))); 
            for j=1:J 
                zv(j,q,count) = zv(j,q,count) + u(m,j)*y(m); 
            end 
        end 
        for j=1:J 
            zv(j,q,count)=1/(1+exp(-(zv(j,q,count)))); 
        end 
    end % end verification loop 
end % end prediction test 
end  % end count loop 
 
% calculate average of the runs and display 
toterr; 
zzz = mean(zz,3); 
 
% calculate training confusion matrix 
% recall (0,1) denotes quad 2-4 membership, (1,0) denotes quad 1-3 membership 
% let 1-3 membership be 'Positive', and 2-4 membership be 'Negative' 
TPtr = 0; 
FPtr = 0; 
TNtr = 0; 
FNtr = 0; 
TPver = 0; 
FPver = 0; 
TNver = 0; 
FNver = 0; 
 
for q=1:Q 
    if zzz(1,q,count)>zzz(2,q,count) 
        if t(1,q) == 1 
            TPtr = TPtr + 1; 
        else 
            FPtr = FPtr + 1; 
        end 
    else 
        if t(2,q) == 1 
            TNtr = TNtr + 1; 
        else 
            FNtr = FNtr + 1; 
        end 
    end 
end 
 
for q=Q+1:size(x,2) 
    if zv(1,q,count)>zv(2,q,count) 
        if t(1,q) == 1 
            TPver = TPver + 1; 
        else 
            FPver = FPver + 1; 
        end 
    else 
        if t(2,q) == 1 
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            TNver = TNver + 1; 
        else 
            FNver = FNver + 1; 
        end 
    end 
end 
 
postr = [TPtr FPtr]; 
negtr = [FNtr TNtr]; 
 
disp('  FF Training Results') 
disp('     Pos    Neg') 
disp(postr) 
disp(negtr) 
 
posver = [TPver FPver]; 
negver = [FNver TNver]; 
 
disp('  FF Test Results') 
disp('     Pos    Neg') 
disp(posver) 
disp(negver) 
 
Radial Basis Function Validation Code 
 
%clc 
clear 
% input matrix 
% generate training data points and populate into matrix 
x=unifrnd(-1,1,30,2); 
 
% plot the points 
for i=1:size(x,1) 
    plot(x(i,2),x(i,1),'*') 
    hold on 
end 
 
% create target vector based upon discriminator lines 
% let (0,1) denote quad 2-4 membership, let (1,0) denote quad 1-3 membership 
t=[]; 
 
for i=1:size(x,1) 
    if (x(i,1) > 0 & x(i,2) > 0) | (x(i,1) < 0 & x(i,2) < 0) 
        t(i,1)=1; 
    else 
        t(i,2)=1; 
    end 
end 
 
% adds a bias column of 1's to the left of side of matrix x 
x=[ones(size(x,1),1) x];  
 
% number of exemplars upon which to train 
tr = 20;  
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% number of years ahead to predict 
yr=0; 
% transpose input and target matrices,  
x=x'; 
t=t'; 
% set stepsize 
nu=1.0; 
% upper layer output row vector 
y=[]; 
% middle layer neurode centers 
v=[]; 
% upper layer weights matrix 
u=[]; 
% middle layer summations weight gradients 
dw=[]; 
% summation matrix for distance calculation 
addup=[]; 
% number of inputs (features) 
N=size(x,1); 
% number of output layer neurodes 
J=size(t,1); 
% number of exemplars to run through 
Q=tr; 
% number of midddle layer neurodes 
M=Q; 
% set number of iterations 
iter=100; 
%compute single spread parameter 
sigma=1/((2*M)^(1/N)); 
%sigma = 0.065; 
% setting initial weights, neurode centers, and neurode spread parameters 
for m=1:M 
    for j=1:J 
        u(m,j)=unifrnd(-0.5, 0.5); 
    end % end J loop 
end % end m loop, setting initial weights 
v=x; 
 
% used as a comparator to know when to stop increasing iterations 
prevtoterr = 1.0;  
% parameter that tells the code when to stop (when decreases in toterr become very small) 
toterr = 0; 
% calculate difference vector 
for q=1:Q 
    for m=1:M 
        distnc=0; 
        for n=1:N 
            distnc = distnc + (x(n,q)-v(n,m))^2; 
        end 
        addup(m,q) = distnc; 
    end 
end 
    
% compute y(m,q) 
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for q=1:Q 
    for m=1:M 
        if q == m 
           y(m,q)=1; 
       else 
           y(m,q)=exp(-(addup(m,q))/(2*(sigma^2))); 
       end % end if test 
   end % end m loop 
end % end q loop 
                     
while abs(prevtoterr-toterr)>.000001 
    prevtoterr=toterr; 
    % initialize iterations 
    for i=1:iter 
        toterr=0; 
        for m=1:M 
            for j=1:J 
                du(m,j)=0; 
                for q=1:Q 
                    dw(j,q)=0; 
                end % end q loop 
            end % end j loop 
        end % end m loop 
        % compute new outputs 
        for q=1:Q 
            for j=1:J 
                for m=1:M 
                    dw(j,q) = dw(j,q) + (u(m,j)*y(m,q)); 
                end % end m loop 
            end % end j loop 
        end % end new output loops 
        for q=1:Q 
            for j=1:J 
                z(j,q) = dw(j,q)/M; 
            end % end j loop 
        end % end q loop 
        for q=1:Q 
            for j=1:J 
                toterr = toterr + ((t(j,q)-z(j,q))^2); 
            end % end j loop 
        end % end error calculation 
        if toterr<prevtoterr 
            nu=nu*1.04; 
        else 
            nu=nu*0.92; 
        end % end new stepsize check 
        % adjust weights 
        for m=1:M 
            for j=1:J 
                for q=1:Q 
                    du(m,j)=du(m,j)+((t(j,q)-z(j,q))*y(m,q)); 
                end % end q loop 
            end % end j loop 
        end % end m loop 
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        for m=1:M 
            for j=1:J 
                u(m,j) = u(m,j)+((2*nu)/M)*du(m,j); 
            end % end j loop 
        end % end m loop 
    end % end iteration loop 
end % end tolerance loop 
 
% test output matrix 
zvrb=[]; 
% test middle layer outputs 
ytest=[]; 
 
% verify test data 
if tr < size(x,2) 
    for q=Q+1:size(x,2)+yr 
        % zero out output matrix 
        for j=1:J 
            zvrb(j,q)=0; 
        end % end j loop 
        % calculate distances from center 
        for m=1:M 
            distnc=0; 
            for n=1:N 
                distnc = distnc + (x(n,q-yr)-v(n,m))^2; 
            end % end n loop 
            addup(m,q) = distnc; 
        end % end m loop 
    end % end q loop 
    % compute ytest(m,q) 
    for q=Q+1:size(x,2)+yr 
        for m=1:M 
            ytest(m,q)=exp(-(addup(m,q))/(2*(sigma^2))); 
        end % end m loop 
    end % end q loop 
    % compute outputs 
    for q=Q+1:size(x,2)+yr 
        for j=1:J 
            adduys=0; 
            for m=1:M 
                adduys=adduys+u(m,j)*ytest(m,q); 
            end % end m loop 
            zvrb(j,q)=adduys/M; 
        end % end j loop 
    end % end q loop 
end % end test code 
 
% calculate training confusion matrix 
% recall (0,1) denotes quad 2-4 membership, (1,0) denotes quad 1-3 membership 
% let 1-3 membership be 'Positive', and 2-4 membership be 'Negative' 
TPtr = 0; 
FPtr = 0; 
TNtr = 0; 
FNtr = 0; 
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TPver = 0; 
FPver = 0; 
TNver = 0; 
FNver = 0; 
 
for q=1:Q 
    if z(1,q)>z(2,q) 
        if t(1,q) == 1 
            TPtr = TPtr + 1; 
        else 
            FPtr = FPtr + 1; 
        end 
    else 
        if t(2,q) == 1 
            TNtr = TNtr + 1; 
        else 
            FNtr = FNtr + 1; 
        end 
    end 
end 
 
for q=Q+1:size(x,2) 
    if zvrb(1,q)>zvrb(2,q) 
        if t(1,q) == 1 
            TPver = TPver + 1; 
        else 
            FPver = FPver + 1; 
        end 
    else 
        if t(2,q) == 1 
            TNver = TNver + 1; 
        else 
            FNver = FNver + 1; 
        end 
    end 
end 
 
postr = [TPtr FPtr]; 
negtr = [FNtr TNtr]; 
 
disp('  RBF Training Results') 
disp('     Pos    Neg') 
disp(postr) 
disp(negtr) 
 
posver = [TPver FPver]; 
negver = [FNver TNver]; 
 
disp('  RBF Test Results') 
disp('     Pos    Neg') 
disp(posver) 
disp(negver) 
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Appendix H:  VBA Reliability Model (AARES) Code 
 
Custom GUI 
Private Sub Cancel_Click() 
    Unload Me 
    End 
End Sub 
Private Sub Run_Click() 
Dim tr As Integer, yr As Integer, stepsizeLR As Double, nuFF As Double, nuRB As Double, _ 
MFF As Integer, agg As Integer, tag As Integer 
' Capture the value of the years to train listbox 
With TrYr 
    If .ListIndex <> -1 Then 
        tr = TrYr.Value 
    Else 
        MsgBox "Select the number of years to train the network." 
        Exit Sub 
    End If 
End With 
 
'Capture value of out-year prediction listbox 
With OutYear 
    If .ListIndex <> -1 Then 
        yr = OutYear.Value 
    Else 
        MsgBox "Select the number of out-years to predict." 
        .SetFocus 
        Exit Sub 
    End If 
End With 
 
'Capture value of number of runs over which to average FFN and RBFN 
With Average 
    If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Then 
        MsgBox "Enter a number of runs over which to average results." 
        .SetFocus 
        Exit Sub 
    Else 
    agg = Average.Value 
    End If 
End With 
 
'Check to ensure at least one network selected 
If LR.Value = False And FFN.Value = False And RBFN.Value = False Then 
    MsgBox "You must select at least one network." 
    Exit Sub 
End If 
 
'Capture which networks to run and associated parameters 
With LR 
    If .Value = True Then 
        With TextBox1 
            If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Or .Value > 1 Then 
                MsgBox "Enter a LR stepsize between 0.0 and 1.0." 
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                .SetFocus 
                Exit Sub 
            Else 
            stepsizeLR = TextBox1 
            End If 
        End With 
    End If 
End With 
         
With FFN 
    If .Value = True Then 
        With TextBox2 
            If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Or .Value > 1 Then 
                MsgBox "Enter a FFN stepsize between 0.0 and 1.0." 
                .SetFocus 
                Exit Sub 
            End If 
        End With 
        With TextBox4 
            If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Then 
                MsgBox "Enter the number of middle layer neurodes." 
                .SetFocus 
                Exit Sub 
            Else 
            nuFF = TextBox2 
            MFF = TextBox4 
            End If 
        End With 
    End If 
End With 
 
With RBFN 
    If .Value = True Then 
        With TextBox3 
            If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Or .Value > 1 Then 
                MsgBox "Enter a RBFN spread between 0.0 and 1.0." 
                .SetFocus 
                Exit Sub 
            Else 
            nuRB = TextBox3 
            End If 
        End With 
    End If 
End With 
                 
tag = 0 
 
Unload Me 
 
' kick back over to the main program, transfer the arguments 
Call Sheet2.Main(tr, yr, stepsizeLR, nuFF, nuRB, MFF, agg, tag) 
End Sub 
 
Private Sub TrYr_DropButtonClick() 
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End Sub 
 
Private Sub UserForm_Initialize() 
 
'Populate the TrYr listbox 
If TrYr.ListIndex = -1 Then 
    For i = 10 To 13 
        TrYr.AddItem (i) 
    Next i 
End If 
 
'Populate the out-year prediction listbox 
If OutYear.ListIndex = -1 Then 
    For i = 0 To 2 
        OutYear.AddItem (i) 
    Next i 
End If 
End Sub 
 
Quick Estimate GUI 
Private Sub Cancel_Click() 
 
Unload Me 
End 
 
End Sub 
Private Sub Run_Click() 
Dim tr As Integer, yr As Integer, stepsizeLR As Double, nuFF As Double, nuRB As Double, _ 
MFF As Integer, agg As Integer, tag As Integer 
 
tag = 1 
 
With OutYear 
    If .ListIndex <> -1 Then 
        yr = OutYear.Value 
    Else 
        MsgBox "Select the number of out-years to predict." 
        .SetFocus 
        Exit Sub 
    End If 
End With 
 
tr = 11 
stepsizeLR = 0.001 
nuFF = 0.7 
nuRB = 1 
MFF = 5 
agg = 5 
 
Unload Me 
 
Call Sheet2.Main(tr, yr, stepsizeLR, nuFF, nuRB, MFF, agg, tag) 
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End Sub 
 
Private Sub UserForm_Initialize() 
'Populate the out-year prediction listbox 
If OutYear.ListIndex = -1 Then 
    For i = 0 To 2 
        OutYear.AddItem (i) 
    Next i 
End If 
End Sub 
 
AARES Logic 
Option Explicit 
Option Base 1 
 
Dim i As Integer, j As Integer, k As Integer, l As Integer, ii As Integer, _ 
iter As Integer, n As Integer, m As Integer, q As Integer, _ 
prevtoterr As Double, toterr As Double, count As Integer, X() As Double, _ 
t() As Double, ncols As Integer, nrows As Integer, agg As Integer, _ 
nn As Integer, mm As Integer, qq As Integer, jj As Integer, sumcount As Double, _ 
zlr() As Double, zzlr() As Double, zff() As Double, zzff() As Double, _ 
zvff() As Double, zzvff() As Double, zrb() As Double, zzrb() As Double, _ 
zvrb() As Double, zzvrb() As Double, cc As Integer, rr As Integer, marker As Integer, _ 
ZGem() As Double, corrZ() As Double, kk As Integer 
 
Sub Main(tr, yr, stepsizeLR, nuFF, nuRB, MFF, agg, tag) 
 
Call Capture 
 
' if doing the quick estimate, get maximum training points 
If tag = 1 Then 
    tr = UBound(X, 2) - yr 
End If 
 
' check to ensure not training beyond prediction capability 
If tr + yr > UBound(X, 2) Then 
    MsgBox "Sum of Training Years and Out-Year Prediction must be <= " & UBound(X, 2) 
    UserInputs.Show 
End If 
 
' get parameters to place model results 
With Range("A2") 
    cc = Range(.Offset(0, 0), .End(xlToRight)).Columns.count + 4 
End With 
With Range("E2") 
    rr = Range(.Offset(1, 0), .End(xlDown)).Rows.count 
End With 
 
' copy over FY column -- will use for x-axis on charts 
With Range("A2") 
    For j = 0 To rr 
        .Offset(j, 0).Copy 
        .Offset(j, cc).PasteSpecial (xlPasteFormats) 
        .Offset(j, cc).PasteSpecial (xlPasteValues) 
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        .Offset(j, 4).Copy 
        .Offset(j, cc + 1).PasteSpecial (xlPasteFormats) 
        .Offset(j, cc + 1).PasteSpecial (xlPasteValues) 
    Next j 
    .Offset(-1, cc).Value = "Reliablity Estimates" 
    .Offset(-1, cc).Characters.Font.Size = 10 
    .Offset(-1, cc).Characters.Font.Bold = True 
    For j = tr + 1 + yr To UBound(X, 2) + yr 
        .Offset(j, cc).Value = .Offset(j - 1, cc).Value + 1 
        .Offset(j, cc).Borders(xlEdgeRight).LineStyle = xlContinuous 
        .Offset(j, cc).HorizontalAlignment = xlCenter 
    Next j 
End With 
 
marker = 0 
 
If stepsizeLR <> 0 Then 
    Call LogReg(tr, yr, stepsizeLR) 
End If 
 
If nuFF <> 0 Then 
    Call FFNN(tr, yr, nuFF, MFF, agg) 
End If 
 
If nuRB <> 0 Then 
    Call RBFNN(tr, yr, nuRB, agg) 
End If 
 
If marker > 1 Then 
    Call Fusion(tr, yr) 
End If 
 
Call errors(tr, yr) 
 
If tag = 1 Then 
    Call QuickChart(yr) 
Else 
    Call Chart 
End If 
 
End Sub 
 
Sub LogReg(tr, yr, stepsizeLR) 
' logistic regression (instantaneous) 
 
' strip off bottom row of flight test results from input matrix and set as target vector 
ReDim t(1, UBound(X, 2)) 
For i = 1 To UBound(X, 2) 
    t(1, i) = X(UBound(X, 1), i) 
Next i 
 
'sets nfeat = to the number of columns 
Dim nfeat As Integer 
nfeat = UBound(X, 1) - 1 
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' output training vector 
ReDim zlr(tr + yr) As Double 
' output prediction vector 
ReDim zvlr(UBound(X, 2) + yr) As Double 
' weight vector 
ReDim w(nfeat) As Double 
' weight gradient vector 
ReDim dw(nfeat) As Double 
 
'variable to index where to display data 
marker = marker + 1 
 
' zero out weights 
For ii = 1 To nfeat 
    w(ii) = 0 
Next ii 
 
'sets number of iterations for code to run through 
iter = 1000 
' used as a comparator to know when to stop increasing iterations 
prevtoterr = 1 
' parameter that tells the code when to stop (when decreases in toterr become very small) 
toterr = 0 
 
' loops through with increasing number of iterations until graph stabilizes 
' and converges -- when toterr changes very little 
Do While Abs(prevtoterr - toterr) > 0.001 
    prevtoterr = toterr 
    For i = 1 To iter 
        toterr = 0 ' zeros out total error 
        For ii = 1 To nfeat 
            dw(ii) = 0 ' zeros out dw, differential of the error 
        Next ii 
        For j = 1 + yr To tr + yr 'j runs from 1 down the number of rows 
            zlr(j) = 0 ' initializes zlr(j) at zero (estimated value) 
            For k = 1 To nfeat ' runs from 1 across the number of columns 
                zlr(j) = zlr(j) + w(k) * X(k, j - yr) ' sets Yhat = previous_Yhat + weight*current x_value,  x_value 
changes across the columns 
            Next k ' does this across the columns 
            zlr(j) = (1 / (1 + Exp(-1 * zlr(j)))) ' call the sigmoid file and do it's thing with the z_matrix element 
            For l = 1 To nfeat 'l runs across the columns 
                dw(l) = (zlr(j) - X(nfeat + 1, j)) * zlr(j) * (1 - zlr(j)) * X(l, j - yr) ' cumes all the differentials of the 
errors 
                w(l) = w(l) - stepsizeLR * dw(l) ' steps in the direction opposite the error, converges toward the 
"true" weights/b_knot and b_one 
            Next l 
            toterr = toterr + ((zlr(j) - X(nfeat + 1, j)) ^ 2) ' cumes total error per iteration 
        Next j 
    Next i 
    ' sets number of iterations to run through next depending upon changes 
    ' in toterr 
    If Abs(prevtoterr - toterr) > 0.01 Then 
        iter = iter + 1000 
    Else 
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        iter = iter + 500 
    End If 
Loop 
 
' logreg prediction code 
If tr < UBound(X, 2) Then 
    For n = tr + 1 + yr To UBound(X, 2) + yr 
        zvlr(n) = 0 
        For k = 1 To nfeat 
            zvlr(n) = zvlr(n) + w(k) * X(k, n - yr) 
        Next k ' end k loop 
        zvlr(n) = 1 / (1 + Exp(-(zvlr(n)))) 
    Next n ' end n loop 
End If ' end year check 
 
With Range("k2") 
    .Offset(0, marker) = "Log Reg" 
    .Offset(0, 0).Copy 
    .Offset(0, marker).PasteSpecial (xlPasteFormats) 
    For ii = 1 + yr To tr + yr 
        .Offset(ii, marker) = zlr(ii) 
        .Offset(ii, marker).HorizontalAlignment = xlCenter 
        .Offset(ii, marker).NumberFormat = "##.00%" 
        .Offset(ii, marker).Characters.Font.Size = 8 
    Next ii 
    For ii = 1 + tr + yr To UBound(X, 2) + yr 
        .Offset(ii, marker) = zvlr(ii) 
        .Offset(ii, marker).HorizontalAlignment = xlCenter 
        .Offset(ii, marker).NumberFormat = "##.00%" 
        .Offset(ii, marker).Characters.Font.Size = 8 
    Next ii 
    If marker = 1 Then 
        .Offset(1 + yr, -2) = "Training" 
            If tr < UBound(X, 2) Then 
                .Offset(1 + tr + yr, -2) = "Prediction" 
            End If 
    End If 
End With 
 
End Sub 
 
Sub FFNN(tr, yr, nuFF, MFF, agg) 
Randomize 
 
' strip off bottom row of flight test results from input matrix and set as target vector 
ReDim t(1, UBound(X, 2)) 
For i = 1 To UBound(X, 2) 
    t(1, i) = X(UBound(X, 1), i) 
Next i 
 
'variable to index where to display data 
marker = marker + 1 
' number of runs to and then average together 
'agg = 2 
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' number of inputs (features) 
n = UBound(X, 1) - 1 
' number of midddle layer neurodes 
m = MFF 
' number of output layer neurodes 
j = UBound(t, 1) 
' average of output runs 
ReDim zzff(j, tr + yr) As Double 
' average of prediction runs 
ReDim zzvff(j, UBound(X, 2) + yr) As Double 
' lower layer output matrix 
ReDim zff(j, tr + yr, agg) As Double 
' verification output matrix 
ReDim zvff(j, UBound(X, 2) + yr, agg) As Double 
 
' loop through a few times to get an average of the output values 
For count = 1 To agg 
' upper layer output row vector 
ReDim Y(m) As Double 
' middle layer weights matrix 
ReDim w(n, m) As Double 
' upper layer weights matrix 
ReDim u(m, j) As Double 
' middle layer summations weight gradients 
ReDim dw(n, m) As Double 
 
' set number of iterations 
iter = 1500 
' setting initial weights 
For mm = 1 To m 
    For nn = 1 To n 
        w(nn, mm) = (0.4 * Rnd) - 0.2 
    Next nn 
    For jj = 1 To j 
        u(mm, jj) = (0.4 * Rnd) - 0.2 
    Next jj 
Next mm ' end m loop, setting initial weights 
 
prevtoterr = 1 
toterr = 0 
Do While Abs(prevtoterr - toterr) > 0.001 
    prevtoterr = toterr 
    ' initialize iterations 
    For i = 1 To iter 
        toterr = 0 
        ' run down the rows of exemplars 
        For qq = 1 + yr To tr + yr 
            ' zero out outputs 
            For jj = 1 To j 
                zff(jj, qq, count) = 0 
            Next jj ' end j loop, zero out outputs 
            For nn = 1 To n 
                For mm = 1 To m 
                    dw(nn, mm) = 0 
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                Next mm ' end m loop 
            Next nn ' end n loop, zero out summation portion of middle layer weight gradients 
            For mm = 1 To m 
                'calculate middle layer outputs 
                Y(mm) = 0 
                For nn = 1 To n 
                    Y(mm) = Y(mm) + w(nn, mm) * X(nn, qq - yr) 
                Next nn ' end n loop, sum across middle layer prior to squashing 
                ' calculate sigmoid of middle layer outputs -- squash 'em 
                Y(mm) = 1 / (1 + Exp(-(Y(mm)))) 
            Next mm ' end m loop, middle layer outputs 
            ' calculate outputs 
            For jj = 1 To j 
                For mm = 1 To m 
                    zff(jj, qq, count) = zff(jj, qq, count) + u(mm, jj) * Y(mm) 
                Next mm ' end m loop, sum across the outputs prior to squashing 
                ' calculate sigmoid of outputs -- squash 'em 
                zff(jj, qq, count) = 1 / (1 + Exp(-(zff(jj, qq, count)))) 
            Next jj ' end j loop, new output loop 
            ' adjust weights 
            For mm = 1 To m 
                ' calculate new upper layer weights 
                For jj = 1 To j 
                    u(mm, jj) = u(mm, jj) + nuFF * ((t(jj, qq) - zff(jj, qq, count)) * zff(jj, qq, count) * (1 - zff(jj, qq, 
count)) * Y(mm)) 
                Next jj ' end j loop, uppper layer weight update 
                ' calculate summation portion of gradient for middle layer 
                For nn = 1 To n 
                    For jj = 1 To j 
                        dw(nn, mm) = dw(nn, mm) + (t(jj, qq) - zff(jj, qq, count)) * (zff(jj, qq, count) * (1 - zff(jj, 
qq, count))) * u(mm, jj) 
                    Next jj ' end j loop cume portion of middle layer weight gradient 
                    ' calculate middle layer weights 
                    w(nn, mm) = w(nn, mm) + nuFF * dw(nn, mm) * (Y(mm) * (1 - Y(mm)) * X(nn, qq - yr)) 
                Next nn ' end n loop middle layer weight adjustments 
            Next mm ' end m loop, weight adjustments 
            ' calculate SSE 
            For jj = 1 To j 
                toterr = toterr + (zff(jj, qq, count) - t(jj, qq)) ^ 2 
            Next jj ' end toterr cume loop 
        Next qq ' end q loop number of exemplars on which to train 
    Next i 'end iteration loop 
    If Abs(prevtoterr - toterr) > 0.005 Then 
        iter = iter + 100 
    Else 
        iter = iter + 50 
    End If ' end iteration step-check loop 
Loop ' end .001 while loop 
 
' verify weights developed during training -- attempt to predict current year or out-year flight 
' test results within data set 
If tr < UBound(X, 2) Then 
    For qq = tr + 1 + yr To UBound(X, 2) + yr 
        For jj = 1 To j 
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            zvff(jj, qq, count) = 0 
        Next jj 
        For mm = 1 To m 
            Y(mm) = 0 
            For nn = 1 To n 
                Y(mm) = Y(mm) + w(nn, mm) * X(nn, qq - yr) 
            Next nn 
            Y(mm) = 1 / (1 + Exp(-(Y(mm)))) 
            For jj = 1 To j 
                zvff(jj, qq, count) = zvff(jj, qq, count) + u(mm, jj) * Y(mm) 
            Next jj 
        Next mm 
        For jj = 1 To j 
            zvff(jj, qq, count) = 1 / (1 + Exp(-(zvff(jj, qq, count)))) 
        Next jj 
    Next qq ' end verification loop 
End If ' end prediction test 
Next count  ' end count loop 
 
' calculate average of the training runs and display 
For jj = 1 To j 
    For qq = 1 + yr To tr + yr 
        sumcount = 0 
        For count = 1 To agg 
            sumcount = sumcount + zff(jj, qq, count) 
        Next count 
        zzff(jj, qq) = sumcount / UBound(zff, 3) 
    Next qq 
Next jj 
'MsgBox "Training " & tr & " Out-year " & yr & " stepsize " & nuFF 
' calculate average of prediction runs 
If tr < UBound(X, 2) Then 
    For jj = 1 To j 
        For qq = tr + 1 + yr To UBound(X, 2) + yr 
            sumcount = 0 
            For count = 1 To agg 
                sumcount = sumcount + zvff(jj, qq, count) 
            Next count 
            zzvff(jj, qq) = sumcount / UBound(zvff, 3) 
        Next qq 
    Next jj 
End If 
 
'present calculated estimates in worksheet 
With Range("k2") 
    .Offset(0, marker) = "FFN" 
    .Offset(0, 0).Copy 
    .Offset(0, marker).PasteSpecial (xlPasteFormats) 
    For jj = 1 To UBound(t, 1) 
        For ii = 1 + yr To tr + yr 
            .Offset(ii, marker) = zzff(jj, ii) 
            .Offset(ii, marker).HorizontalAlignment = xlCenter 
            .Offset(ii, marker).NumberFormat = "##.00%" 
            .Offset(ii, marker).Characters.Font.Size = 8 
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        Next ii 
        For ii = 1 + tr + yr To UBound(X, 2) + yr 
            .Offset(ii, marker) = zzvff(jj, ii) 
            .Offset(ii, marker).HorizontalAlignment = xlCenter 
            .Offset(ii, marker).NumberFormat = "##.00%" 
            .Offset(ii, marker).Characters.Font.Size = 8 
        Next ii 
    Next jj 
    If marker = 1 Then 
        .Offset(1 + yr, -2) = "Training" 
            If tr < UBound(X, 2) Then 
                .Offset(1 + tr + yr, -2) = "Prediction" 
            End If 
    End If 
End With 
 
End Sub 
 
Sub RBFNN(tr, yr, nuRB, agg) 
' RBFN code 
Randomize 
 
' strip off bottom row of flight test results from input matrix and set as target vector 
ReDim t(1, UBound(X, 2)) 
For i = 1 To UBound(X, 2) 
    t(1, i) = X(UBound(X, 1), i) 
Next i 
 
'variable to index where to display data 
marker = marker + 1 
' number of runs to and then average together 
'agg = 2 
' number of inputs (features) 
n = UBound(X, 1) - 1 
' number of midddle layer neurodes 
m = tr 
' number of output layer neurodes 
j = UBound(t, 1) 
 
' set output vectors 
ReDim zrb(j, tr + yr, agg) As Double 
ReDim zvrb(j, UBound(X, 2) + yr, agg) As Double 
ReDim zzrb(j, tr + yr) As Double 
ReDim zzvrb(j, UBound(X, 2) + yr) As Double 
 
' summation variables for use in code 
Dim adduys As Double 
Dim distnc As Double 
 
' loop through a few times and get an averaqe 
For count = 1 To agg 
' upper layer output row vector 
ReDim Y(m, tr + yr) As Double 
' middle layer neurode centers 
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ReDim v(n, m) As Double 
' upper layer weights matrix 
ReDim u(m, j) As Double 
' upper layer weights gradients 
ReDim du(m, j) As Double 
' middle layer summations weight gradients 
ReDim dw(j, tr + yr) As Double 
' summation matrix for distance calculation 
ReDim addup(m, UBound(X, 2) + yr) As Double 
 
' set number of iterations 
iter = 100 
'compute single spread parameter 
Dim sigma As Double 
sigma = 1 / ((2 * m) ^ (1 / n)) 
' setting initial weights, neurode centers 
For mm = 1 To m 
    For jj = 1 To j 
        u(mm, jj) = (0.5 * Rnd) - 0.5 
    Next jj ' end J loop 
    For nn = 1 To n 
        v(nn, mm) = X(nn, mm) 
    Next nn ' end n loop 
Next mm ' end m loop, setting initial weights 
 
' used as a comparator to know when to stop increasing iterations 
prevtoterr = 1 
' parameter that tells the code when to stop (when decreases in toterr become very small) 
toterr = 0 
' calculate difference vector 
For qq = 1 + yr To tr + yr 
    For mm = 1 To m 
        distnc = 0 
        For nn = 1 To n 
            distnc = distnc + (X(nn, qq - yr) - v(nn, mm)) ^ 2 
        Next nn 
        addup(mm, qq) = distnc 
    Next mm 
Next qq 
    
' compute y(m,q) 
For qq = 1 + yr To tr + yr 
    For mm = 1 To m 
        If qq = mm Then 
           Y(mm, qq) = 1 
       Else 
           Y(mm, qq) = Exp(-(addup(mm, qq)) / (2 * (sigma ^ 2))) 
       End If ' end if test 
    Next mm ' end m loop 
Next qq ' end q loop 
 
' train the network 
Do While Abs(prevtoterr - toterr) > 0.00001 
    prevtoterr = toterr 
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    ' initialize iterations 
    For i = 1 To iter 
        toterr = 0 
        For mm = 1 To m 
            For jj = 1 To j 
                du(mm, jj) = 0 
                For qq = 1 + yr To tr + yr 
                    dw(jj, qq) = 0 
                Next qq ' end q loop 
            Next jj ' end j loop 
        Next mm ' end m loop 
        ' compute new outputs 
        For qq = 1 + yr To tr + yr 
            For jj = 1 To j 
                For mm = 1 To m 
                    dw(jj, qq) = dw(jj, qq) + (u(mm, jj) * Y(mm, qq)) 
                Next mm ' end m loop 
            Next jj ' end j loop 
        Next qq ' end new output loops 
        For qq = 1 + yr To tr + yr 
            For jj = 1 To j 
                zrb(jj, qq, count) = dw(jj, qq) / m 
            Next jj ' end j loop 
        Next qq ' end q loop 
        ' SSE calculation 
        For qq = 1 + yr To tr + yr 
            For jj = 1 To j 
                toterr = toterr + ((t(jj, qq) - zrb(jj, qq, count)) ^ 2) 
            Next jj ' end j loop 
        Next qq ' end error calculation 
        If toterr < prevtoterr Then 
            nuRB = nuRB * 1.04 
        Else 
            nuRB = nuRB * 0.92 
        End If ' end new stepsize check 
        ' adjust weights 
        For mm = 1 To m 
            For jj = 1 To j 
                For qq = 1 + yr To tr + yr 
                    du(mm, jj) = du(mm, jj) + ((t(jj, qq) - zrb(jj, qq, count)) * Y(mm, qq)) 
                Next qq ' end q loop 
            Next jj ' end j loop 
        Next mm ' end m loop 
        For mm = 1 To m 
            For jj = 1 To j 
                u(mm, jj) = u(mm, jj) + ((2 * nuRB) / m) * du(mm, jj) 
            Next jj ' end j loop 
        Next mm ' end m loop 
    Next i ' end iteration loop 
Loop ' end tolerance loop 
 
' test middle layer outputs 
ReDim ytest(m, UBound(X, 2) + yr) As Double 
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' verify test data 
If tr < UBound(X, 2) Then 
    For qq = tr + 1 + yr To UBound(X, 2) + yr 
        ' zero out output matrix 
        For jj = 1 To j 
            zvrb(jj, qq, count) = 0 
        Next jj ' end j loop 
        ' calculate distances from center 
        For mm = 1 To m 
            distnc = 0 
            For nn = 1 To n 
                distnc = distnc + (X(nn, qq - yr) - v(nn, mm)) ^ 2 
            Next nn ' end n loop 
            addup(mm, qq) = distnc 
        Next mm ' end m loop 
    Next qq ' end q loop 
    ' compute ytest(m,q) 
    For qq = tr + 1 + yr To UBound(X, 2) + yr 
        For mm = 1 To m 
            ytest(mm, qq) = Exp(-(addup(mm, qq)) / (2 * (sigma ^ 2))) 
        Next mm ' end m loop 
    Next qq ' end q loop 
    ' compute outputs 
    For qq = tr + 1 + yr To UBound(X, 2) + yr 
        For jj = 1 To j 
            adduys = 0 
            For mm = 1 To m 
                adduys = adduys + u(mm, jj) * ytest(mm, qq) 
            Next mm ' end m loop 
            zvrb(jj, qq, count) = adduys / m 
        Next jj ' end j loop 
    Next qq ' end q loop 
End If ' end prediction test 
Next count ' end count loop 
 
' calculate average of the training runs and display 
For jj = 1 To j 
    For qq = 1 + yr To tr + yr 
        sumcount = 0 
        For count = 1 To agg 
            sumcount = sumcount + zrb(jj, qq, count) 
        Next count 
        zzrb(jj, qq) = sumcount / UBound(zrb, 3) 
    Next qq 
Next jj 
'MsgBox "Training " & tr & " Out-year " & yr & " stepsize " & nuFF 
' calculate average of prediction runs 
If tr < UBound(X, 2) Then 
    For jj = 1 To j 
        For qq = tr + 1 + yr To UBound(X, 2) + yr 
            sumcount = 0 
            For count = 1 To agg 
                sumcount = sumcount + zvrb(jj, qq, count) 
            Next count 
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            zzvrb(jj, qq) = sumcount / UBound(zvrb, 3) 
        Next qq 
    Next jj 
End If 
 
'present calculated estimates in workwheet 
With Range("k2") 
    .Offset(0, marker) = "RBFN" 
    .Offset(0, 0).Copy 
    .Offset(0, marker).PasteSpecial (xlPasteFormats) 
    For jj = 1 To UBound(t, 1) 
        For ii = 1 + yr To tr + yr 
            .Offset(ii, marker) = zzrb(jj, ii) 
            .Offset(ii, marker).HorizontalAlignment = xlCenter 
            .Offset(ii, marker).NumberFormat = "##.00%" 
            .Offset(ii, marker).Characters.Font.Size = 8 
        Next ii 
        For ii = tr + 1 + yr To UBound(X, 2) + yr 
            .Offset(ii, marker) = zzvrb(jj, ii) 
            .Offset(ii, marker).HorizontalAlignment = xlCenter 
            .Offset(ii, marker).NumberFormat = "##.00%" 
            .Offset(ii, marker).Characters.Font.Size = 8 
        Next ii 
    Next jj 
    If marker = 1 Then 
        .Offset(1 + yr, -2) = "Training" 
            If tr < UBound(X, 2) Then 
                .Offset(1 + tr + yr, -2) = "Prediction" 
            End If 
    End If 
End With 
End Sub 
 
Sub Fusion(tr, yr) 
' fuse the outputs from the selected nets 
Dim denomalpha As Double 
denomalpha = 0 
'ReDim ZZGem(UBound(x, 2) + yr - tr) As Double 
Dim numalpha As Double 
Dim CM As Range 
Dim PL As Range 
 
'generate correlation matrix and display on worksheet 
With Range("J2") 
    j = Range(.Offset(0, 1), .End(xlToRight)).Columns.count 
    ii = Range(.Offset(0, 0), .End(xlDown)).Rows.count 
    Range(.Offset(yr + 1, 2), .Offset(tr + yr, j)).Select 
    Range(.Offset(yr + 1, 2), .Offset(tr + yr, j)).Name = "CM" 
    Range(.Offset(ii + 3, 1), .Offset(ii + 3, 1)).Name = "PL" 
    Application.Run "ATPVBAEN.XLA!Mcorrel", ActiveSheet.Range("CM"), _ 
        ActiveSheet.Range("PL"), "C", False 
    .Offset(ii + 2, 1) = "Correlation Matrix" 
    .Offset(ii + 2, 1).Characters.Font.Size = 8 
    .Offset(ii + 2, 1).Characters.Font.Bold = True 
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ReDim corrZ(j - 1, j - 1) As Double 
 
'put worksheet correlation matrix into an array 
For jj = 1 To j - 1 
    For kk = 1 To j - 1 
        corrZ(kk, jj) = Range(.Offset(kk + ii + 3, jj + 1), .Offset(kk + ii + 3, jj + 1)).Value 
    Next kk 
Next jj 
 
'MsgBox "corrZ " & corrZ(1, 1) & "  " & corrZ(1, 2) & "  " & corrZ(2, 1) & "  " & corrZ(2, 2) 
 
ReDim alpha(j - 1) As Double 
 
' make matrix symmetrical for ease of use, sum up inverse of elements for denominator 
For jj = 1 To j - 1 
    For kk = 1 To j - 1 
        If corrZ(kk, jj) = 0 Then 
            corrZ(kk, jj) = corrZ(jj, kk) 
        End If 
        'MsgBox "corrZ " & corrZ(kk, jj) 
    Next kk 
Next jj 
 
For jj = 1 To j - 1 
    For kk = 1 To j - 1 
        'MsgBox "corrZ " & corrZ(kk, jj) 
        denomalpha = denomalpha + (1 / corrZ(kk, jj)) 
    Next kk 
Next jj 
 
' calculate numerator and weights, display on worksheet 
.Offset(ii + 6 + UBound(corrZ, 1), 1) = "Fusion Weights" 
.Offset(ii + 6 + UBound(corrZ, 1), 1).Characters.Font.Size = 8 
.Offset(ii + 6 + UBound(corrZ, 1), 1).Characters.Font.Bold = True 
For jj = 1 To UBound(corrZ, 1) 
    numalpha = 0 
    For kk = 1 To UBound(corrZ, 2) 
        numalpha = numalpha + (1 / corrZ(jj, kk)) 
    Next kk 
    alpha(jj) = numalpha / denomalpha 
    .Offset(ii + 7 + UBound(corrZ, 1), 1 + jj) = alpha(jj) 
Next jj 
 
'Calculate fused outputs and display on worksheet 
.Offset(0, j + 1) = "Fused" 
.Offset(0, j + 1).HorizontalAlignment = xlCenter 
.Offset(0, j + 1).Characters.Font.Size = 8 
.Offset(0, j + 1).Characters.Font.Bold = True 
.Offset(0, j + 1).Borders(xlEdgeBottom).LineStyle = xlContinuous 
.Offset(0, j + 1).Borders(xlEdgeLeft).LineStyle = xlContinuous 
 
ReDim ZGem(ii - 1) As Double 
For kk = 1 + yr To ii - 1 
    ZGem(kk) = 0 



 

103 

    For jj = 1 To UBound(corrZ, 1) 
        ZGem(kk) = ZGem(kk) + alpha(jj) * .Offset(kk, jj + 1).Value 
    Next jj 
    .Offset(kk, j + 1) = ZGem(kk) 
    .Offset(kk, j + 1).HorizontalAlignment = xlCenter 
    .Offset(kk, j + 1).NumberFormat = "##.00%" 
    .Offset(kk, j + 1).Characters.Font.Size = 8 
Next kk 
 
End With 
 
End Sub 
 
Sub errors(tr, yr) 
 
' calculate the errors of the selected methods 
' first capture the outputs and put into a matrix 
Dim ncols As Integer, nrows As Integer, Z() As Double 
 
If marker = 1 Then 
    qq = 3 
    Else 
    qq = 14 
End If 
 
With Range("J2") 
    ncols = Range(.Offset(0, 2), .End(xlToRight)).Columns.count 
    nrows = Range(.Offset(1, 0), .End(xlDown)).Rows.count 
    ReDim Z(nrows, ncols) As Double 
    For nn = 1 To nrows 
        For mm = 1 To ncols 
            Z(nn, mm) = .Offset(nn, 1 + mm).Value 
        Next mm 
    Next nn 
     
    ReDim sse(ncols) As Double, mse(ncols) As Double, rmse(ncols) As Double 
    For mm = 1 To ncols 
        For nn = 1 + yr To UBound(X, 2) 
            sse(mm) = sse(mm) + (t(1, nn) - Z(nn, mm)) ^ 2 
        Next nn 
        mse(mm) = sse(mm) / (UBound(X, 2) - yr) 
        rmse(mm) = mse(mm) ^ (1 / 2) 
    Next mm 
     
    .Offset(nrows + qq, 1) = "SSE" 
    .Offset(nrows + qq, 1).Characters.Font.Size = 8 
    .Offset(nrows + qq, 1).Characters.Font.Bold = True 
    .Offset(nrows + qq + 2, 1) = "MSE" 
    .Offset(nrows + qq + 2, 1).Characters.Font.Size = 8 
    .Offset(nrows + qq + 2, 1).Characters.Font.Bold = True 
    .Offset(nrows + qq + 4, 1) = "RMSE" 
    .Offset(nrows + qq + 4, 1).Characters.Font.Size = 8 
    .Offset(nrows + qq + 4, 1).Characters.Font.Bold = True 
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    For mm = 1 To ncols 
        .Offset(nrows + qq, 1 + mm) = sse(mm) 
        .Offset(nrows + qq + 2, 1 + mm) = mse(mm) 
        .Offset(nrows + qq + 4, 1 + mm) = rmse(mm) 
    Next mm 
 
End With 
     
End Sub 
 
Private Sub GoBabyGo_Click() 
 
' clear old model results 
With Range("I1") 
    Range(.Offset(0, 0), .Offset(100, 50)).Clear 
End With 
 
Worksheets("Model").ChartObjects.Delete 
 
SnappyIntro.Show 
 
End Sub 
Sub Capture() 
 
' collect the number of years worth of flight test data 
With Range("E2") 
    ncols = Range(.Offset(1, 0), .End(xlDown)).Rows.count 
End With 
 
'collect the number of features 
With Range("B2") 
    nrows = Range(.Offset(0, 0), .End(xlToRight)).Columns.count 
    ' add a row of ones across the top and take the transpose of the input matrix 
    ReDim X(nrows + 1, ncols) As Double 
    For j = 1 To ncols 
        X(1, j) = 1 
        For i = 1 To nrows 
            X(i + 1, j) = .Offset(j, i - 1).Value 
        Next i 
    Next j 
End With 
 
End Sub 
 
Sub Chart() 
Dim ncols As Integer, nrows As Integer 
 
With Range("J2") 
 
    ncols = Range(.Offset(0, 0), .End(xlToRight)).Columns.count - 1 
    nrows = Range(.Offset(0, 0), .End(xlDown)).Rows.count - 1 
    Charts.Add 
    ActiveChart.ChartType = xlXYScatterLines 
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    ActiveChart.SetSourceData Source:=Sheets("Model").Range(.Offset(0, 0), .Offset(nrows, ncols)), 
PlotBy:= _ 
        xlColumns 
    ActiveChart.Location Where:=xlLocationAsObject, Name:="Model" 
    With ActiveChart 
        .HasTitle = True 
        .ChartTitle.Characters.Text = "Reliability Estimates" 
        .Axes(xlCategory, xlPrimary).HasTitle = True 
        .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "FY" 
        .Axes(xlValue, xlPrimary).HasTitle = True 
        .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Reliability" 
    End With 
    ActiveChart.ApplyDataLabels Type:=xlDataLabelsShowNone, LegendKey:=False 
    ActiveChart.Axes(xlCategory).Select 
    With ActiveChart.Axes(xlCategory) 
        .MinimumScale = 1990 
        .MaximumScaleIsAuto = True 
        .MinorUnitIsAuto = True 
        .MajorUnitIsAuto = True 
        .Crosses = xlCustom 
        .CrossesAt = 1990 
        .ReversePlotOrder = False 
        .ScaleType = xlLinear 
        .DisplayUnit = xlNone 
    End With 
       
End With 
 
With ChartObjects(1) 
    .Left = 0 
    .Top = 214 
End With 
End Sub 
 
Sub QuickChart(yr) 
Dim nrows As Integer, ncols As Integer 
 
With Range("J2") 
    ncols = Range(.Offset(0, 0), .End(xlToRight)).Columns.count - 1 
    nrows = Range(.Offset(0, 0), .End(xlDown)).Rows.count - 1 
    Charts.Add 
    ActiveChart.ChartType = xlXYScatterLines 
    ActiveChart.SetSourceData Source:=Sheets("Model").Range(.Offset(0, 0), .Offset(nrows, ncols)), _ 
        PlotBy:=xlColumns 
    ActiveChart.SeriesCollection(4).Delete 
    ActiveChart.SeriesCollection(3).Delete 
    ActiveChart.SeriesCollection(2).Delete 
    ActiveChart.Location Where:=xlLocationAsNewSheet 
    With ActiveChart 
        .HasTitle = True 
        .ChartTitle.Characters.Text = "Reliability Estimates" 
        .Axes(xlCategory, xlPrimary).HasTitle = True 
        .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "FY" 
        .Axes(xlValue, xlPrimary).HasTitle = True 
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        .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Reliability" 
    End With 
    ActiveChart.ApplyDataLabels Type:=xlDataLabelsShowValue, LegendKey:=False 
    ActiveChart.SeriesCollection(2).DataLabels.Select 
    Selection.AutoScaleFont = True 
    With Selection.Font 
        .Name = "Arial" 
        .FontStyle = "Regular" 
        .Size = 8 
        .Strikethrough = False 
        .Superscript = False 
        .Subscript = False 
        .OutlineFont = False 
        .Shadow = False 
        .Underline = xlUnderlineStyleNone 
        .ColorIndex = xlAutomatic 
        .Background = xlAutomatic 
    End With 
    ActiveChart.SeriesCollection(1).Select 
    ActiveChart.SeriesCollection(1).ApplyDataLabels Type:=xlDataLabelsShowNone, _ 
        AutoText:=True, LegendKey:=False 
         
    If yr = 0 Then 
        ActiveChart.Shapes.AddTextbox(msoTextOrientationHorizontal, 475, 5, _ 
        200, 45).Select 
        Selection.Characters.Text = "Your current year reliabiity estimate is " & Round(.Offset(nrows, 
ncols).Value * 100, 2) & _ 
        "%, +/- " & Round(.Offset(nrows + 18, ncols) * 100, 2) & "% (RMSE)." 
        Selection.AutoScaleFont = False 
    With Selection.Characters(Start:=1, Length:=70).Font 
        .Name = "Arial" 
        .FontStyle = "Bold" 
        .Size = 12 
        .Strikethrough = False 
        .Superscript = False 
        .Subscript = False 
        .OutlineFont = False 
        .Shadow = False 
        .Underline = xlUnderlineStyleNone 
        .ColorIndex = xlAutomatic 
    End With 
    Else 
        ActiveChart.Shapes.AddTextbox(msoTextOrientationHorizontal, 475, 5, _ 
        200, 45).Select 
        Selection.Characters.Text = "Your " & yr & " year reliability prediction is " & Round(.Offset(nrows, 
ncols).Value * 100, 2) & _ 
        "%, +/- " & Round(.Offset(nrows + 18, ncols) * 100, 2) & "% (RMSE)." 
        Selection.AutoScaleFont = False 
    With Selection.Characters(Start:=1, Length:=70).Font 
        .Name = "Arial" 
        .FontStyle = "Bold" 
        .Size = 12 
        .Strikethrough = False 
        .Superscript = False 
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        .Subscript = False 
        .OutlineFont = False 
        .Shadow = False 
        .Underline = xlUnderlineStyleNone 
        .ColorIndex = xlAutomatic 
    End With 
    End If 
End With 
 
End Sub 
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